




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
封丘县三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 下列给出的几个关系中:;,正确的有( )个A.个 B.个 C.个 D.个2 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( )A36种B38种C108种D114种3 如果集合 ,同时满足,就称有序集对为“ 好集对”. 这里有序集对是指当时,和是不同的集对, 那么“好集对” 一共有( )个 A个 B个 C个 D个4 已知集合A=x|x40,则RA=( )A(,4)B(,4C(4,+)D4,+)5 设为双曲线的右焦点,若的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为,则双曲线的离心率为( )ABCD3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想6 定义运算:例如,则函数的值域为( )A B C D7 在中,其面积为,则等于( )A B C D8 已知不等式组表示的平面区域为,若内存在一点,使,则的取值范围为( )A B C D9 已知x1,则函数的最小值为( )A4B3C2D110若命题p:x0R,sinx0=1;命题q:xR,x2+10,则下列结论正确的是( )Ap为假命题Bq为假命题Cpq为假命题Dpq真命题11如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )A30B50C75D15012设是等差数列的前项和,若,则( )A1 B2 C3 D4二、填空题13已知正方体ABCDA1B1C1D1的一个面A1B1C1D1在半径为的半球底面上,A、B、C、D四个顶点都在此半球面上,则正方体ABCDA1B1C1D1的体积为14若展开式中的系数为,则_【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想15一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是16【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系中,直线与函数和均相切(其中为常数),切点分别为和,则的值为_17一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件im中的整数m的值是18袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为三、解答题19已知函数f(x)=2x,且f(2)=(1)求实数a的值;(2)判断该函数的奇偶性;(3)判断函数f(x)在(1,+)上的单调性,并证明20(本小题满分12分)设函数.(1)当时,求不等式的解集;(2)当时,恒成立,求实数的取值范围21已知F1,F2分别是椭圆=1(9m0)的左右焦点,P是该椭圆上一定点,若点P在第一象限,且|PF1|=4,PF1PF2()求m的值;()求点P的坐标22(本小题满分12分)如图,四棱锥中,底面为矩形,平面,是的中点.(1)证明:平面;(2)设,三棱锥的体积,求到平面的距离.11123函数f(x)是R上的奇函数,且当x0时,函数的解析式为f(x)=1(1)用定义证明f(x)在(0,+)上是减函数;(2)求函数f(x)的解析式24(本小题满分10分)选修44:坐标系与参数方程以坐标原点为极点,以轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为方程为(),直线的参数方程为(为参数)(I)点在曲线上,且曲线在点处的切线与直线垂直,求点的直角坐标和曲线C的参数方程;(II)设直线与曲线有两个不同的交点,求直线的斜率的取值范围封丘县三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】试题分析:由题意得,根据集合之间的关系可知:和是正确的,故选C.考点:集合间的关系.2 【答案】A【解析】解:由题意可得,有2种分配方案:甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法根据分步计数原理,共有323=18种分配方案甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共323=18种分配方案由分类计数原理,可得不同的分配方案共有18+18=36种,故选A【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法3 【答案】B【解析】试题分析:因为,所以当时,;当时,;当时,;当时,;当时,;当时,;所以满足条件的“好集对”一共有个,故选B.考点:元素与集合的关系的判断.【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111 4 【答案】D【解析】解:由A中不等式解得:x4,即A=(,4),全集为R,RA=4,+),故选:D【点评】此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键5 【答案】B【解析】6 【答案】D【解析】考点:1、分段函数的解析式;2、三角函数的最值及新定义问题. 7 【答案】B【解析】试题分析:由题意得,三角形的面积,所以,又,所以,又由余弦定理,可得,所以,则,故选B考点:解三角形【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理和余弦定理、三角形的面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中利用比例式的性质,得到是解答的关键,属于中档试题8 【答案】A 【解析】解析:本题考查线性规划中最值的求法平面区域如图所示,先求的最小值,当时,在点取得最小值;当时,在点取得最小值若内存在一点,使,则有的最小值小于,或,选A9 【答案】B【解析】解:x1x10由基本不等式可得, 当且仅当即x1=1时,x=2时取等号“=”故选B10【答案】A【解析】解:时,sinx0=1;x0R,sinx0=1;命题p是真命题;由x2+10得x21,显然不成立;命题q是假命题;p为假命题,q为真命题,pq为真命题,pq为假命题;A正确故选A【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对R满足x20,命题p,pq,pq的真假和命题p,q真假的关系11【答案】B【解析】解:该几何体是四棱锥,其底面面积S=56=30,高h=5,则其体积V=Sh=305=50故选B12【答案】A【解析】1111试题分析:故选A111考点:等差数列的前项和二、填空题13【答案】2 【解析】解:如图所示,连接A1C1,B1D1,相交于点O则点O为球心,OA=设正方体的边长为x,则A1O=x在RtOAA1中,由勾股定理可得: +x2=,解得x=正方体ABCDA1B1C1D1的体积V=2故答案为:214【答案】【解析】由题意,得,即,所以15【答案】2:1 【解析】解:设圆锥、圆柱的母线为l,底面半径为r,所以圆锥的侧面积为: =rl圆柱的侧面积为:2rl所以圆柱和圆锥的侧面积的比为:2:1故答案为:2:116【答案】【解析】17【答案】6 【解析】解:第一次循环:S=0+=,i=1+1=2;第二次循环:S=+=,i=2+1=3;第三次循环:S=+=,i=3+1=4;第四次循环:S=+=,i=4+1=5;第五次循环:S=+=,i=5+1=6;输出S,不满足判断框中的条件;判断框中的条件为i6?故答案为:6【点评】本题考查程序框图,尤其考查循环结构对循环体每次循环需要进行分析并找出内在规律本题属于基础题18【答案】 【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P2再求“第一次摸到红球且第二次也摸到红球”的概率为P=,根据条件概率公式,得:P2=,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题看准确事件之间的联系,正确运用公式,是解决本题的关键三、解答题19【答案】 【解析】解:(1)f(x)=2x,且f(2)=,4=,a=1;(2分)(2)由(1)得函数,定义域为x|x0关于原点对称(3分)=,函数为奇函数(6分)(3)函数f(x)在(1,+)上是增函数,(7分)任取x1,x2(1,+),不妨设x1x2,则=(10分)x1,x2(1,+)且x1x2x2x10,2x1x210,x1x20f(x2)f(x1)0,即f(x2)f(x1),f(x)在(1,+)上是增函数 (12分)【点评】本题考查函数的单调性与奇偶性,考查学生分析解决问题的能力,属于中档题20【答案】(1);(2)【解析】试题分析:(1)由于原不等式的解集为;(2)由设,原命题转化为又且考点:1、函数与不等式;2、对数与指数运算.【方法点晴】本题考查函数与不等式、对数与指数运算,涉及函数与不等式思想、数形结合思想和转化化高新,以及逻辑思维能力、等价转化能力、运算求解能力与能力,综合性较强,属于较难题型. 第一小题利用函数与不等式思想和转化化归思想将原不等式转化为,解得;第二小题利用数学结合思想和转化思想,将原命题转化为 ,进而求得:21【答案】 【解析】解:()由已知得:|PF2|=64=2,在PF1F2中,由勾股定理得,即4c2=20,解得c2=5m=95=4;()设P点坐标为(x0,y0),由()知,解得P()【点评】本题考查椭圆方程的求法,考查了椭圆的简单性质,属中档题22【答案】(1)证明见解析;(2).【解析】试题解析:(1)设和交于点,连接,因为为矩形,所以为的中点,又为的中点,所以,且平面,平面,所以平面.(2),由,可得,作交于.由题设知平面,所以,故平面,又,所以到平面的距离为.1考点:1、棱锥的体积公式;2、直线与平面平行的判定定理.23【答案】 【解析】(1)证明:设x2x10,f(x1)f(x2)=(1)(1)=,由题设可得x2x10,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年健身教练健身教练健身行业市场调研与报告撰写考核试卷
- 2025年自然灾害防范安全教育培训考试自然灾害防治技术试卷
- 2025年大学教育技术专业题库- 教育技术学中的创新教育工具
- 2025年护士执业资格考试题库-社区护理学专项健康教育试题
- 企业信息安全产品采购操作流程
- 班会主题活动设计与执行方案指导
- 高考英语书面表达写作素材与范文
- 小学语文大禹治水教学设计详解
- 教师暑假培训心得体会范文
- 卓越数学教学心得及课堂改革方案
- 财产申报表-被执行人用
- 万能式断路器课件
- 《小篮球规则》知识培训
- 江苏扬州历年中考语文古诗欣赏试题汇编(2003-2024)
- 入党申请书专用纸-A4单面打印
- 南方医科大学物理实验激光实验实验报告
- 检验科内部审核报告
- 无人机的分类
- 国家义务教育质量监测模拟测试(四年级)心理健康
- 油气储运安全技术
- 风湿性疾病的疫苗接种与预防措施
评论
0/150
提交评论