已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
请欣赏 牛顿定律运用中的临界和极值问题 一、临界问题:1、临界状态:物体的运动状态即将发生突变而还 没有变化的状态。可理解为“恰好现象”或“恰恰不出现”的状态。 平衡物体(a=0)的平衡状态即将被打破而还没有被打破的 瞬间;动态物体(a0)的状态即将发生突变而还没有变化的瞬 间。临界状态也可归纳为加速度即将发生突变的状态。 2、临界条件:加速度发生突变的本质原因是物体的外力发生了 突变,物体处于临界状态,必然隐含着某些力(如弹力、摩擦力 等)的突变。抓住这些力突变的条件,是我们解题的关键。 3、处理办法 (1)做好受力分析、状态分析和运动过程的分析 建立运动的情景,抓住运动过程中的“转折点”。(2)寻找临界 状态所隐含的条件。 二、极值问题 (1)运用矢量法则讨论某变力的最小值。(2)利 用三角函数知识讨论最大值或最小值。 牛顿定律运用中的临界和极值问题 例题分析:1、小车在水平路面上加速向右运动,一质量为m的 小球用一条水平线和一条斜线(与竖直方向成30度角)把 小球系于车上,求下列情况下,两绳的拉力:(1)加速度 a1=g/3 (2)加速度a2=2g/3 B AO 分析(1)平衡态(a=0)受力分析 。T1 T2 图1 mg (2)a由0逐渐增大的过程中,开始阶段,因m 在竖直方向的 加速度为0,角不变,T1不变,那么,加速度增大(即合外 力增大),OA绳承受的拉力T2必减小。当T2=0时,m存在一 个加速度a0,如图2所示,物体所受的合外力是T1的水平分力 。当a.a0时,a增大,T2=0(OA绳处于松弛状态),T1在竖 直方向的分量不变,而其水平方向的分量必增加(因 合外力 增大),角一定增大,设为。受力分析如图3所示。 T1 mg 图3 当T2=0时,如图2所示,F0=tgmg ma0=tgmg a0=tgg。 当aa0时,T2=0,(松弛状态)T1sin=ma (1) T1cos=mg (2) tg=a/g(如图3) T1 F0 mg 图2 要点(1)通过受力分析和运动过程分析找到弹力发生突变的临界 状态以及此状态所隐含的具体条件。 (2)弹力是被动力,其大小和 方向应由物体的状态和物体所受的其它力来确定。 牛顿定律运用中的临界和极值问题 例题分析:2、质量m=1kg的物体,放在=370的斜面上,物 体与斜面的动摩擦因数=0.3,要是物体与斜面体一起沿 水平方向向左加速运动,则其加速度多大? 分析:讨论涉及静摩擦力的临界问题的一般方法是:1、抓住静摩擦力方向的 可能性。2、物体即将由相对 静止的状态即将变为相对 滑动状态的条件是 f=N(最大静摩擦力)。本题有两个临界状态,当物体具有斜向上的 运动趋 势时,物体受到的摩擦力为最大静摩擦力;当物体具有斜向下的运动趋势时, 物体受到的摩擦力为最大静摩擦力。 300 图1 x y f1 N1 mg 图2 当物体具有斜向下的运动趋势时,受力分析如图2所示, sin300 N1 - f1 cos300=ma0 (1) f1 sin300+N1 cos300=mg (2) f 1 =N1 (3) a 01=? 要点:(1)最大静摩擦力是物体即将由相对静止变为相对滑动的临界条件。(2) 注意静摩擦力方向的可能性 。(3)重视题设条件tg 和tg的限止。 当物体具有斜向上的运动趋势时,受力分析如图3所示, N2sin300+ f2 cos300=ma0 (1) N2 cos300=mg + f2 sin300(2) f 2 =N2 (3) a 02=? (求出加速度的取值范围) 图3 牛顿定律运用中的临界和极值问题 例题分析:3、如图所示,传送带与地面的倾角为=370,从A到B的长度 16m,传送带以10m/s的速率逆时针方向转动,在传送带上端无初速地放 一个质量为m=0.5kg的物体,它与传送带之间的动摩擦因数为0.5,求 物体从A到B 所需的时间是多少?(sin370=0.6 cos370=0.8 g=10m/s2 ) A B 图1 分析:tg,物体的初速为零,开始阶段,物体速度小 于传送带的速度,物体相对于传送带斜向上运动,其受到 的滑动摩擦力斜向下,下滑力和摩擦力的合力使物体产生 加速度,物体做初速度为零的匀加速运动。如图2所示。 f1 mgsin 图2 当物体与传送带速度相等的瞬时,物体与带之间的摩擦力为 零,但物体在下滑力的作用下仍要加速,物体的速度将大于 传送带的速度,物体相对于传送带向斜向下的方向运动,在 这一时刻摩擦力方向将发生突变,摩擦力方向由斜向下变为 斜向上。物体的下滑力和所受的摩擦力的合力使物体产生了 斜向下的加速度,由于下滑力大于摩擦力,物体仍做匀加速 运动, 。如图3所示。 要点 (1)从运动过程的分析中找临界状态 (2)滑动摩擦力 方向的突变是本题 的关键。(3) tg 和tg的区别。 f2 mgsin 图3 思考:若tg,物体将 怎样 运动呢? 例题3全解 解:因tg,物体的初速为零。开始阶段,物体相对于传送带斜 向上运动,其受到的滑动摩擦力斜向下,下滑力和摩擦力的合 力使物体产生加速度,物体做初速度为零的匀加速运动。如图2 。 A B 图1 f1 mgsin 图2 f2 mgsin 图3 根据牛顿第二定律,mgsin+mgcos=ma1 a1=g(sin+cos)=10 (0.6+0.50.8)m/s2=10m/s2 物体的速度与传送带速度相等需要的时间为 t1=v/a1=10/10s=1s 由于tg,物体在重力的作用下继续加速,当物体的速度大 于传送带的速度时,传送带给物体一斜向上的滑动摩擦力,此 时受力情况如图3所示。根据牛顿第二定律,得 Mgsin-mgcos=ma2 a2=mgsin-mgcos=10 (0.6- 0.80.5)m/s2=2m/s2 设后一阶段物体滑至底端所用的时间为t2,由运动学公式得: L-S=vt2+1/2 a2t22 解得:t2=1s (t2=-11s舍去) 所以,物体由A到B所用时间为 t1+t2=2s 牛顿定律运用中的临界和极值问题 例题分析:4、如图所示,两块质量分别m1是m2和,用劲度系数为k的轻弹簧 连在一起,放在水平面上,将木块1下压一段距离后释放,它在做简谐运 动,在运动过程中,木块2始终没有离开水平面,且对水平面的最小压力 为零,则木块1的最大加速度的大小是多大?木块2对水平面的最大压力是 多大? 1 2 图1 分析:以物块1为研究对象,弹簧对木块1的弹力和物块1的重力 的合力是物块1做简谐运动的恢复力。弹簧弹起的初阶段,弹簧 处于被压缩状态,向上的弹力大于重力,物块1向上做变加速运 动,加速度逐渐减小,其方向竖直向上。当弹力等于重力时,物 块1的加速度为零,而速度最大(平衡位置)。然后,弹簧处于 伸长状态,物块1受到的弹力向下,弹力逐渐增大,加速度逐渐 增大,达到最高点时,加速度最大,方向竖直向下。当物块1下 落至最低点时,物块1的加速度也达到 最大值,但方向竖直向上 。 以物块2为研究对象,根据题设条件可知,当物块1达到最高点 时,物块1受到的向下的弹力最大,此时,物块2受到的向上的 弹力也最大,使地面对物块2的支持力为零。当物块1落至最低 点时,其加速度与最高点的加速度等值反向,弹簧对物块1的 弹力(方向向上)。此时,弹簧对物块2的弹力也最大,方向 竖直向下,因此,木块2对地面的压力达到最大值。 要点(1)弹 力的突变是本 题的临界条件 。 (2)简谐振动 的过程分析是 本题的疑难点 。 例4全解 解:(1)研究物块1上升的过程。以物块1为研究对象,其 受力分析和运动过程分析如图1所示。物块1在最高点A 处,加速度最大,且方向竖直向下,F1+m1g=mam F1最 大。以物块2为研究对象,其受力分析如图2所示。F1最 大时,N=0,即F1=m2g 因F1=F1 所以,m1g+m2g=m1am (2)研究物块1下落的过程,物块1落至最低点B处,其受到 向上的弹力最大,加速度达到最大值,但方向竖直向上 (简谐振动的对称性)。如图1所示,F2-m1g=m1am F2=m1g+m1am 。对物块2受力分析,如图3所示, N=m2g+F2=2(m1+m2)g ,根据牛顿第三定律,物块2对 地面的压力的大小为2(m1+m2)g 。 am am a=0 F2 F1 图1 A B O m2 F1 N 图2 m2 N F2 图3 牛顿定律运用中的临界和极值问题 例题分析:5、如图所示,在水平面上放一质量为m的物体,与水 平面间的动摩擦因数为,现用力F拉物体,(1)如果要是物 体做匀速运动,求拉力F的最小值(2)如果要是物体以加速 度a做匀加速运动,求拉力F的最小值 F 图1 分析(1)物理方法:物体受力分析如图所示(图2)。 F f mg 图2 N 如果F变化,N随之改变,f也随之改变。但是,f、N合力T的方 向不变,因f/N= ,如图3所示。mg的大小 方向均不变,T的方 向不变,当F与T垂直时,F的值最小。如图4所示,F的最小值 为mgsin,而tg=f/N=。四力平衡转化为三力平衡。 T 图3 图4 数学方法:如图2,正交分解。Fcos-f=0 N+Fsin=mg f=(mg+Fsin) , 联立。 用两角和 公式求极值(方法略) (2) Fcos-f=ma N+Fsin=mg f=(mg+Fsin) , 联立。 方法同上,但不能用图解法 。 求极值的方法 (1) 图 解法 (2)函数法 课堂练习 1、如图1所示,物体A放在物体B上,物体B 放在光滑的水平面上,已知mA=6kg mB=2kg ,A、B之间的动摩擦因数=0.2 ,A物体受到一个水平向右的拉力F的作用 ,为保证A、B相对静止,求力F的取值范 围(F0).。 2、如图2所示,长为L,质量为M的木板A静 止在光滑的水平桌面上,有一质量m的小 木块B以水平速度V0恰好落在木板A的左端 ,木块B与木板A间的摩擦系数为,木块 B可视为质点,求:如果最后B恰好到达A 的右端不落下来,则V0的值应是多大? A B F 图1 A B 图2 V0 小结 一、临界状态:某种物理现象转化为另一种物理现象的 转折状态叫临界状态。在物体的运动过程中指物体的 运动状态即将发生突变而还没有变化的瞬间,或弹力 、摩擦力等因素发生突变的时刻。临界状态也可理解 为“恰好现象”或“恰恰不出现”的状态。 二、处理办法:1、找临界状态(1)做好受力分析、运 动过程分析和状态分析,抓运动过程中的“转折点”。 (2)利用假设法讨论,假设某命题成立,推理或判断 物体的状态是否会发生突变。2、分析隐含条件(1) 弹力的突变(2)摩擦力的突变。 三、极值问题:1、物理方法:对于 动态平衡的物体可以 运用平行四边形法则或三角形法则进行定性分析。对 于变速运动的物体,不能运用此方法。(2)数学方法 :利用正交分解法,列出解析式,借助数学工具求极 值的方法求解,这是一种定量分析的方法。 牛顿定律运用中的临界和极值问题 一、临界问题:1、临界状态:物体的运动状态即将发生突变而还 没有变化的状态。可理解为“恰好现象”或“恰恰不出现”的状态。 平衡物体(a=0)的平衡状态即将被打破而还没有被打破的 瞬间;动态物体(a0)的状态即将发生突变而还没有变化的瞬 间。临界状态也可归纳为加速度即将发生突变的状态。 2、临界条件:加速度发生突变的本质原因是物体的外力发生了 突变,物体处于临界状态,必然隐含着某些力(如弹力、摩擦力 等)的突变 。抓住这些力突变的条件,是我们解题的关键。 3、处理办法 (1)做好受力分析、状态分析和运动过程的分析 建立运动的情景,抓住运动过程中的“转折点”。(2)寻找临界 状态所隐含的条件。 二、极值问题 (1)运用矢量法则讨论某变力的最小值。(2)利 数学方法讨论最大值或最小值。 牛顿定律运用中的临界和极值问题 例题分析:1、小车在水平路面上加速向右运动,一质量为m的 小球用一条水平线和一条斜线(与竖直方向成30度角)把 小球系于车上,求下列情况下,两绳的拉力:(1)加速度 a1=g/3 (2)加速度a2=2g/3 B AO 分析(1)平衡态(a=0)受力分析 。T1 T2 图1 mg (2)a由0逐渐增大的过程中,开始阶段,因m 在竖直方向的 加速度为0,角不变,T1不变,那么,加速度增大(即合外 力增大),OA绳承受的拉力T2必减小。当T2=0时,m存在一 个加速度a0,如图2所示,物体所受的合外力是T1的水平分力 。当a.a0时,a增大,T2=0(OA绳处于松弛状态),T1在竖 直方向的分量不变,而其水平方向的分量必增加(因 合外力 增大),角一定增大,设为。受力分析如图3所示。 T1 mg 图3 当T2=0时,如图2所示,F0=tgmg ma0=tgmg a0=tgg。 当aa0时,T2=0,(松弛状态)T1sin=ma (1) T1cos=mg (2) tg=a/g(如图3) T1 F0 mg 图2 要点(1)通过受力分析和运动过程分析找到弹力发生突变的临界 状态以及此状态所隐含的具体条件。 (2)弹力是被动力,其大小和 方向应由物体的状态和物体所受的其它力来确定。 牛顿定律运用中的临界和极值问题 例题分析:2、质量m=1kg的物体,放在=370的斜面上,物 体与斜面的动摩擦因数=0.3,要是物体与斜面体一起沿 水平方向向左加速运动,则其加速度多大? 分析:讨论涉及静摩擦力的临界问题的一般方法是:1、抓住静摩擦力方向的 可能性。2、物体即将由相对 静止的状态即将变为相对 滑动状态的条件是 f=N(最大静摩擦力)。本题有两个临界状态,当物体具有斜向上的 运动趋 势时,物体受到的摩擦力为最大静摩擦力;当物体具有斜向下的运动趋势时, 物体受到的摩擦力为最大静摩擦力。 300 图1 x y f1 N1 mg 图2 当物体具有斜向下的运动趋势时,受力分析如图2所示, sin300 N1 - f1 cos300=ma0 (1) f1 sin300+N1 cos300=mg (2) f 1 =N1 (3) a 01=? 要点:(1)最大静摩擦力是物体即将由相对静止变为相对滑动的临界条件。(2) 注意静摩擦力方向的可能性 。(3)重视题设条件tg 和tg的限止。 当物体具有斜向上的运动趋势时,受力分析如图3所示, N2sin300+ f2 cos300=ma0 (1) N2 cos300=mg + f2 sin300(2) f 2 =N2 (3) a 02=? (求出加速度的取值范围) 图3 牛顿定律运用中的临界和极值问题 例题分析:3、如图所示,传送带与地面的倾角为=370,从A到B的长度 16m,传送带以10m/s的速率逆时针方向转动,在传送带上端无初速地放 一个质量为m=0.5kg的物体,它与传送带之间的动摩擦因数为0.5,求 物体从A到B 所需的时间是多少?(sin370=0.6 cos370=0.8 g=10m/s2 ) A B 图1 分析:tg,物体的初速为零,开始阶段,物体速度小 于传送带的速度,物体相对于传送带斜向上运动,其受到 的滑动摩擦力斜向下,下滑力和摩擦力的合力使物体产生 加速度,物体做初速度为零的匀加速运动。如图2所示。 f1 mgsin 图2 当物体与传送带速度相等的瞬时,物体与带之间的摩擦力为 零,但物体在下滑力的作用下仍要加速,物体的速度将大于 传送带的速度,物体相对于传送带向斜向下的方向运动,在 这一时刻摩擦力方向将发生突变,摩擦力方向由斜向下变为 斜向上。物体的下滑力和所受的摩擦力的合力使物体产生了 斜向下的加速度,由于下滑力大于摩擦力,物体仍做匀加速 运动, 。如图3所示。 要点 (1)从运动过程的分析中找临界状态 (2)滑动摩擦力 方向的突变是本题 的关键。(3) tg 和tg的区别。 f2 mgsin 图3 思考:若tg,物体将 怎样 运动呢? 例题3全解 解:因tg,物体的初速为零。开始阶段,物体相对于传送带斜 向上运动,其受到的滑动摩擦力斜向下,下滑力和摩擦力的合 力使物体产生加速度,物体做初速度为零的匀加速运动。如图2 。 A B 图1 f1 mgsin 图2 f2 mgsin 图3 根据牛顿第二定律,mgsin+mgcos=ma1 a1=g(sin+cos)=10 (0.6+0.50.8)m/s2=10m/s2 物体的速度与传送带速度相等需要的时间为 t1=v/a1=10/10s=1s 由于tg,物体在重力的作用下继续加速,当物体的速度大 于传送带的速度时,传送带给物体一斜向上的滑动摩擦力,此 时受力情况如图3所示。根据牛顿第二定律,得 Mgsin-mgcos=ma2 a2=mgsin-mgcos=10 (0.6- 0.80.5)m/s2=2m/s2 设后一阶段物体滑至底端所用的时间为t2,由运动学公式得: L-S=vt2+1/2 a2t22 解得:t2=1s (t2=-11s舍去) 所以,物体由A到B所用时间为 t1+t2=2s 牛顿定律运用中的临界和极值问题 例题分析:4、如图所示,两块质量分别m1是m2和,用劲度系数为k的轻弹簧 连在一起,放在水平面上,将木块1下压一段距离后释放,它在做简谐运 动,在运动过程中,木块2始终没有离开水平面,且对水平面的最小压力 为零,则木块1的最大加速度的大小是多大?木块2对水平面的最大压力是 多大? 1 2 图1 分析:以物块1为研究对象,弹簧对木块1的弹力和物块1的重力 的合力是物块1做简谐运动的恢复力。弹簧弹起的初阶段,弹簧 处于被压缩状态,向上的弹力大于重力,物块1向上做变加速运 动,加速度逐渐减小,其方向竖直向上。当弹力等于重力时,物 块1的加速度为零,而速度最大(平衡位置)。然后,弹簧处于 伸长状态,物块1受到的弹力向下,弹力逐渐增大,加速度逐渐 增大,达到最高点时,加速度最大,方向竖直向下。当物块1下 落至最低点时,物块1的加速度也达到 最大值,但方向竖直向上 。 以物块2为研究对象,根据题设条件可知,当物块1达到最高点 时,物块1受到的向下的弹力最大,此时,物块2受到的向上的 弹力也最大,使地面对物块2的支持力为零。当物块1落至最低 点时,其加速度与最高点的加速度等值反向,弹簧对物块1的 弹力(方向向上)。此时,弹簧对物块2的弹力也最大,方向 竖直向下,因此,木块2对地面的压力达到最大值。 要点(1)弹 力的突变是本 题的临界条件 。 (2)简谐振动 的过程分析是 本题的疑难点 。 例4全解 解:(1)研究物块1上升的过程。以物块1为研究对象,其 受力分析和运动过程分析如图1所示。物块1在最高点A 处,加速度最大,且方向竖直向下,F1+m1g=mam F1最 大。以物块2为研究对象,其受力分析如图2所示。F1最 大时,N=0,即F1=m2g 因F1=F1 所以,m1g+m2g=m1am (2)研究物块1下落的过程,物块1落至最低点B处,其受到 向上的弹力最大,加速度达到最大值,但方向竖直向上 (简谐振动的对称性)。如图1所示,F2-m1g=m1am F2=m1g+m1am 。对物块2受力分析,如图3所示, N=m2g+F2=2(m1+m2)g ,根据牛顿第三定律,物块2对 地面的压力的大小为2(m1+m2)g 。 am am a=0 F2 F1 图1 A B O m2 F1 N 图2 m2 N F2 图3 牛顿定律运用中的临界和极值问题 例题分析:5、如图所示,在水平面上放一质量为m的物体,与水 平面间的动摩擦因数为,现用力F拉物体,(1)如果要是物 体做匀速运动,求拉力F的最小值(2)如果要是物体以加速 度a做匀加速运动,求拉力F的最小值 F 图1 分析(1)图解法:物体受力分析如图所示(图2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 九江市国信项目管理咨询有限责任公司2025年下半年人员招聘岗位计划调整及改报笔试考试备考题库及答案解析
- 2025厦门银行龙岩分行冬季社会招聘笔试考试备考试题及答案解析
- 2025年大庆市第三医院招聘6人笔试考试参考题库及答案解析
- “国故运动”的西学渊源探析
- 2025福建福州市土地房屋开发总公司聘用人员招聘1人笔试考试参考题库及答案解析
- 2025中铁西北科学研究院有限公司锚索施工技术人员招聘考试笔试参考题库附答案解析
- 2025年湖北省教育科学研究院专项公开招聘3人笔试考试参考题库及答案解析
- 小学4-6年级课堂如何收心班会8课件
- 《生物化学》课件-血细胞代谢(红细胞代谢和白细胞代谢)
- 幼儿园教师招聘面试备考策略分享
- 【MOOC】国际名酒知识与品鉴-暨南大学 中国大学慕课MOOC答案
- 五年级上册道法全册教案
- 食材配送服务方案投标方案【修订版】(技术标)
- 公司年会小品《老同学显摆大会》台词剧本手稿
- 中医病案学智慧树知到期末考试答案章节答案2024年安徽中医药大学
- 考点八:三角函数-【一轮复习讲义】2024年高考数学复习(解析版)
- 全球及中国无人驾驶环卫清扫车行业发展前景分析2024年
- JGT366-2012 外墙保温用锚栓
- 2020-2021学年冀教版数学八年级下册全套月考测试题及答案(共3套)
- 《公输》文言文知识ppt
- GB/T 36507-2023工业车辆使用、操作与维护安全规范
评论
0/150
提交评论