




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷木垒哈萨克自治县外国语学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 某大学的名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车,每车限坐名同学(乘同一辆车的名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的名同学中恰有名同学是来自同一年级的乘坐方式共有( )种.A B C D【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力2 在平面直角坐标系中,直线y=x与圆x2+y28x+4=0交于A、B两点,则线段AB的长为( )A4B4C2D23 在ABC中,a2=b2+c2+bc,则A等于( )A120B60C45D304 在数列an中,a1=3,an+1an+2=2an+1+2an(nN+),则该数列的前2015项的和是( )A7049B7052C14098D141015 已知f(x)在R上是奇函数,且f(x+4)=f(x),当x(0,2)时,f(x)=2x2,则f(7)=( )A2B2C98D986 以过椭圆+=1(ab0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A相交B相切C相离D不能确定7 已知直线 平面,直线平面,则( ) A B与异面 C与相交 D与无公共点8 已知f(x)为偶函数,且f(x+2)=f(x),当2x0时,f(x)=2x;若nN*,an=f(n),则a2017等于( )A2017B8CD9 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士不同的分配方法共有( )A90种B180种C270种D540种10若方程C:x2+=1(a是常数)则下列结论正确的是( )AaR+,方程C表示椭圆BaR,方程C表示双曲线CaR,方程C表示椭圆DaR,方程C表示抛物线11设函数f(x)=的最小值为1,则实数a的取值范围是( )Aa2Ba2CaDa12长方体ABCDA1B1C1D1中,AA1=2AB=2AD,G为CC1中点,则直线A1C1与BG所成角的大小是( )A30B45C60D120二、填空题13若正数m、n满足mnmn=3,则点(m,0)到直线xy+n=0的距离最小值是14在(x2)9的二项展开式中,常数项的值为15如图,在平面直角坐标系xOy中,将直线y=与直线x=1及x轴所围成的图形旋转一周得到一个圆锥,圆锥的体积V圆锥=()2dx=x3|=据此类推:将曲线y=x2与直线y=4所围成的图形绕y轴旋转一周得到一个旋转体,该旋转体的体积V=16已知命题p:xR,x2+2x+a0,若命题p是假命题,则实数a的取值范围是(用区间表示)17如图,一船以每小时20km的速度向东航行,船在A处看到一个灯塔B在北偏东60方向,行驶4小时后,船到达C处,看到这个灯塔在北偏东15方向,这时船与灯塔间的距离为km18已知sin+cos=,且,则sincos的值为三、解答题19某校为了解2015届高三毕业班准备考飞行员学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右前3个小组的频率之比为1:2:4,其中第二小组的频数为11()求该校报考飞行员的总人数;()若经该学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选3人,设X表示体重超过60kg的学生人数,求X的数学期望与方差20如图,边长为2的等边PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点()证明:AMPM; ()求点D到平面AMP的距离21如图,在三棱柱ABCA1B1C1中,侧棱垂直于底面,ABBC,E,F分别是A1C1,AB的中点(I)求证:平面BCE平面A1ABB1;(II)求证:EF平面B1BCC1;(III)求四棱锥BA1ACC1的体积22若f(x)是定义在(0,+)上的增函数,且对一切x,y0,满足f()=f(x)f(y)(1)求f(1)的值,(2)若f(6)=1,解不等式f(x+3)f()223(本小题满分12分)111在如图所示的几何体中,是的中点,.(1)已知,求证:平面; (2)已知分别是和的中点,求证: 平面.24设M是焦距为2的椭圆E: +=1(ab0)上一点,A、B是椭圆E的左、右顶点,直线MA与MB的斜率分别为k1,k2,且k1k2=(1)求椭圆E的方程;(2)已知椭圆E: +=1(ab0)上点N(x0,y0)处切线方程为+=1,若P是直线x=2上任意一点,从P向椭圆E作切线,切点分别为C、D,求证直线CD恒过定点,并求出该定点坐标木垒哈萨克自治县外国语学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有种. 孪生姐妹不乘坐甲车,则有种. 共有24种. 选A.2 【答案】A【解析】解:圆x2+y28x+4=0,即圆(x4)2+y2 =12,圆心(4,0)、半径等于2由于弦心距d=2,弦长为2=4,故选:A【点评】本题主要考查求圆的标准方程的方法,直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题3 【答案】A【解析】解:根据余弦定理可知cosA=a2=b2+bc+c2,bc=(b2+c2a2)cosA=A=120故选A4 【答案】B【解析】解:an+1an+2=2an+1+2an(nN+),(an+12)(an2)=2,当n2时,(an2)(an12)=2,可得an+1=an1,因此数列an是周期为2的周期数列a1=3,3a2+2=2a2+23,解得a2=4,S2015=1007(3+4)+3=7052【点评】本题考查了数列的周期性,考查了计算能力,属于中档题5 【答案】A【解析】解:因为f(x+4)=f(x),故函数的周期是4所以f(7)=f(3)=f(1),又f(x)在R上是奇函数,所以f(1)=f(1)=212=2,故选A【点评】本题考查函数的奇偶性与周期性6 【答案】C【解析】解:设过右焦点F的弦为AB,右准线为l,A、B在l上的射影分别为C、D连接AC、BD,设AB的中点为M,作MNl于N根据圆锥曲线的统一定义,可得=e,可得|AF|+|BF|AC|+|BD|,即|AB|AC|+|BD|,以AB为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|)圆M到l的距离|MN|r,可得直线l与以AB为直径的圆相离故选:C【点评】本题给出椭圆的右焦点F,求以经过F的弦AB为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题7 【答案】D【解析】试题分析:因为直线 平面,直线平面,所以或与异面,故选D.考点:平面的基本性质及推论.8 【答案】D【解析】解:f(x+2)=f(x),f(x+4)=f(x+2)=f(x),即f(x+4)=f(x),即函数的周期是4a2017=f(2017)=f(5044+1)=f(1),f(x)为偶函数,当2x0时,f(x)=2x,f(1)=f(1)=,a2017=f(1)=,故选:D【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键9 【答案】D【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C31C62C21C42=540种故选D10【答案】 B【解析】解:当a=1时,方程C:即x2+y2=1,表示单位圆aR+,使方程C不表示椭圆故A项不正确;当a0时,方程C:表示焦点在x轴上的双曲线aR,方程C表示双曲线,得B项正确;aR,方程C不表示椭圆,得C项不正确不论a取何值,方程C:中没有一次项aR,方程C不能表示抛物线,故D项不正确综上所述,可得B为正确答案故选:B11【答案】C【解析】解:当x时,f(x)=4x323=1,当x=时,取得最小值1;当x时,f(x)=x22x+a=(x1)2+a1,即有f(x)在(,)递减,则f(x)f()=a,由题意可得a1,解得a故选:C【点评】本题考查分段函数的运用:求最值,主要考查指数函数的单调性和二次函数的值域的求法,属于中档题12【答案】C【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AA1=2AB=2AD=2,A1(1,0,2),C1(0,1,2),=(1,1,0),B(1,1,0),G(0,1,1),=(1,0,1),设直线A1C1与BG所成角为,cos=,=60故选:C【点评】本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力,解题时要注意向量法的合理运用二、填空题13【答案】 【解析】解:点(m,0)到直线xy+n=0的距离为d=,mnmn=3,(m1)(n1)=4,(m10,n10),(m1)+(n1)2,m+n6,则d=3故答案为:【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题14【答案】84 【解析】解:(x2)9的二项展开式的通项公式为 Tr+1=(1)rx183r,令183r=0,求得r=6,可得常数项的值为T7=84,故答案为:84【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题15【答案】8 【解析】解:由题意旋转体的体积V=8,故答案为:8【点评】本题给出曲线y=x2与直线y=4所围成的平面图形,求该图形绕xy轴转一周得到旋转体的体积着重考查了利用定积分公式计算由曲边图形旋转而成的几何体体积的知识,属于基础题16【答案】(1,+) 【解析】解:命题p:xR,x2+2x+a0,当命题p是假命题时,命题p:xR,x2+2x+a0是真命题;即=44a0,a1;实数a的取值范围是(1,+)故答案为:(1,+)【点评】本题考查了命题与命题的否定的真假性相反问题,也考查了二次不等式恒成立的问题,是基础题目17【答案】 【解析】解:根据题意,可得出B=7530=45,在ABC中,根据正弦定理得:BC=海里,则这时船与灯塔的距离为海里故答案为18【答案】 【解析】解:sin+cos=,sin2+2sincos+cos2=,2sincos=1=,且sincos,sincos=故答案为:三、解答题19【答案】 【解析】(本小题满分12分)解:()设该校报考飞行员的总人数为n,前三个小组的频率为p1,p2,p3,则,解得,由于,故n=55()由()知,一个报考学生的体重超过60公斤的概率为:p=,由题意知X服从二项分布,即:XB(3,),P(X=k)=,k=0,1,2,3,EX=,DX=【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想,是中档题20【答案】 【解析】()证明:取CD的中点E,连接PE、EM、EAPCD为正三角形PECD,PE=PDsinPDE=2sin60=平面PCD平面ABCDPE平面ABCD四边形ABCD是矩形ADE、ECM、ABM均为直角三角形由勾股定理得EM=,AM=,AE=3EM2+AM2=AE2,AME=90AMPM()解:设D点到平面PAM的距离为d,连接DM,则VPADM=VDPAM而在RtPEM中,由勾股定理得PM=,即点D到平面PAM的距离为21【答案】 【解析】(I)证明:在三棱柱ABCA1B1C1中,BB1底面ABC,所以,BB1BC又因为ABBC且ABBB1=B,所以,BC平面A1ABB1因为BC平面BCE,所以,平面BCE平面A1ABB1(II)证明:取BC的中点D,连接C1D,FD因为E,F分别是A1C1,AB的中点,所以,FDAC且因为ACA1C1且AC=A1C1,所以,FDEC1且 FD=EC1所以,四边形FDC1E是平行四边形所以,EFC1D又因为C1D平面B1BCC1,EF平面B1BCC1,所以,EF平面B1BCC1(III)解:因为,ABBC所以,过点B作BGAC于点G,则因为,在三棱柱ABCA1B1C1中,AA1底面ABC,AA1平面A1ACC1所以,平面A1ACC1底面ABC所以,BG平面A1ACC1所以,四棱锥BA1ACC1的体积【点评】本题考查了线面平行,面面垂直的判定,线面垂直的性质,棱锥的体积计算,属于中档题22【答案】 【解析】解:(1)在f()=f(x)f(y)中,令x=y=1,则有f(1)=f(1)f(1),f(1)=0;(2)f(6)=1,2=1+1=f(6)+f(6),不等式f(x+3)f()2等价为不等式f(x+3)f()f(6)+f(6),f(3x+9)f(6)f(6),即f()f(6),f(x)是(0,+)上的增函数,解得3x9,即不等式的解集为(3,9)23【答案】(1)详见解析;(2)详见解析.【解析】试题分析:(1)根据,所以平面就是平面,连接DF,AC是等腰三角形ABC和ACF的公共底边,点D是AC的中点,所以,即证得平面的条件;(2)要证明线面平行,可先证明面面平行,取的中点为,连接,根据中位线证明平面平面,即可证明结论.试题解析:证明:(1),与确定平面.如图,连结. ,是的中点,.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生物工艺中蛋白质工程的探索-洞察及研究
- 移动设备上假新闻的传播路径分析-洞察及研究
- “中国地质大学(武汉)2025年硕士研究生入学考试(地质工程)试题及答案”
- 艺术管理中的可持续发展实践-洞察及研究
- 可穿戴柔性传感器-洞察及研究
- 2025教师教学原则试题及答案
- 中式菜肴的特点与风味流派说课稿中职专业课-中式烹调技艺-中餐烹饪-旅游大类
- 2025单招数学试题题型及答案
- 建筑特种工安全考试题库及答案解析
- 2025年三基肿瘤科试题及答案
- JJF 1338-2012相控阵超声探伤仪校准规范
- GB/T 40529-2021船舶与海洋技术起货绞车
- GB 31603-2015食品安全国家标准食品接触材料及制品生产通用卫生规范
- 关于公布2016年度中国电力优质工程奖评审结果的通知
- 港口集团绩效考核方案
- 固体化学固体中的扩散
- 送达地址确认书(诉讼类范本)
- 经典企业商业融资计划书模板
- 2023版北京协和医院重症医学科诊疗常规
- 三坐标测量基础知识(基础教育)
- 宜家战略分析(课堂PPT)
评论
0/150
提交评论