




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷宁强县外国语学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知一个算法的程序框图如图所示,当输出的结果为时,则输入的值为( )A B C或 D或2 在中,则的取值范围是( )1111A B C. D3 记,那么ABCD4 已知在ABC中,a=,b=,B=60,那么角C等于( )A135B90C45D755 平面与平面平行的条件可以是( )A内有无穷多条直线与平行B直线a,aC直线a,直线b,且a,bD内的任何直线都与平行6 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m表示若甲队的平均得分不低于乙队的平均得分,那么m的可能取值集合为()A B C D7 “x0”是“x0”是的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件8 如图,函数f(x)=Asin(2x+)(A0,|)的图象过点(0,),则f(x)的图象的一个对称中心是( )A(,0)B(,0)C(,0)D(,0)9 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知三个社区分别有低收入家庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从社区抽取低收入家庭的户数为( )A48 B36 C24 D18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题10在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( )ABCD11执行如图所示的程序框图,若a=1,b=2,则输出的结果是( )A9B11C13D1512在极坐标系中,圆的圆心的极坐标系是( )。ABCD二、填空题13若实数满足,则的最小值为 14在复平面内,复数与对应的点关于虚轴对称,且,则_15如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点从A点测得 M点的仰角MAN=60,C点的仰角CAB=45以及MAC=75;从C点测得MCA=60已知山高BC=100m,则山高MN=m16已知两个单位向量满足:,向量与的夹角为,则 .17满足关系式2,3A1,2,3,4的集合A的个数是18在下列给出的命题中,所有正确命题的序号为 函数y=2x3+3x1的图象关于点(0,1)成中心对称;对x,yR若x+y0,则x1或y1;若实数x,y满足x2+y2=1,则的最大值为;若ABC为锐角三角形,则sinAcosB在ABC中,BC=5,G,O分别为ABC的重心和外心,且=5,则ABC的形状是直角三角形三、解答题19如图,在四棱锥PABCD中,ADBC,ABAD,ABPA,BC=2AB=2AD=4BE,平面PAB平面ABCD,()求证:平面PED平面PAC;()若直线PE与平面PAC所成的角的正弦值为,求二面角APCD的平面角的余弦值20已知曲线C的极坐标方程为42cos2+92sin2=36,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系;()求曲线C的直角坐标方程;()若P(x,y)是曲线C上的一个动点,求3x+4y的最大值21在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为(sin+cos)=1,曲线C2的参数方程为(为参数)()求曲线C1的直角坐标方程与曲线C2的普通方程;()试判断曲线C1与C2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由 22如图,已知椭圆C: +y2=1,点B坐标为(0,1),过点B的直线与椭圆C另外一个交点为A,且线段AB的中点E在直线y=x上()求直线AB的方程()若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,证明:OMON为定值23已知函数f(x)=|xa|()若不等式f(x)2的解集为0,4,求实数a的值;()在()的条件下,若x0R,使得f(x0)+f(x0+5)m24m,求实数m的取值范围24(本小题满分10分)如图O经过ABC的点B,C与AB交于E,与AC交于F,且AEAF.(1)求证EFBC;(2)过E作O的切线交AC于D,若B60,EBEF2,求ED的长宁强县外国语学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】【解析】试题分析:程序是分段函数 ,当时,解得,当时,解得,所以输入的是或,故选D.考点:1.分段函数;2.程序框图.111112 【答案】C【解析】考点:三角形中正余弦定理的运用.3 【答案】B【解析】【解析1】,所以【解析2】,4 【答案】D【解析】解:由正弦定理知=,sinA=,ab,AB,A=45,C=180AB=75,故选:D5 【答案】D【解析】解:当内有无穷多条直线与平行时,a与可能平行,也可能相交,故不选A当直线a,a时,a与可能平行,也可能相交,故不选 B当直线a,直线b,且a 时,直线a 和直线 b可能平行,也可能是异面直线,故不选 C 当内的任何直线都与 平行时,由两个平面平行的定义可得,这两个平面平行,故选 D【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况6 【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m可以取:0,1,2故答案为:C7 【答案】B【解析】解:当x=1时,满足x0,但x0不成立当x0时,一定有x0成立,“x0”是“x0”是的必要不充分条件故选:B8 【答案】 B【解析】解:由函数图象可知:A=2,由于图象过点(0,),可得:2sin=,即sin=,由于|,解得:=,即有:f(x)=2sin(2x+)由2x+=k,kZ可解得:x=,kZ,故f(x)的图象的对称中心是:(,0),kZ当k=0时,f(x)的图象的对称中心是:(,0),故选:B【点评】本题主要考查由函数y=Asin(x+ )的部分图象求函数的解析式,正弦函数的对称性,属于中档题9 【答案】【解析】根据分层抽样的要求可知在社区抽取户数为10【答案】C【解析】解:如图所示,BCD是圆内接等边三角形,过直径BE上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD的内切圆的半径为1,显然当弦为CD时就是BCD的边长,要使弦长大于CD的长,就必须使圆心O到弦的距离小于|OF|,记事件A=弦长超过圆内接等边三角形的边长=弦中点在内切圆内,由几何概型概率公式得P(A)=,即弦长超过圆内接等边三角形边长的概率是故选C【点评】本题考查了几何概型的运用;关键是找到事件A对应的集合,利用几何概型公式解答11【答案】C【解析】解:当a=1时,不满足退出循环的条件,故a=5,当a=5时,不满足退出循环的条件,故a=9,当a=9时,不满足退出循环的条件,故a=13,当a=13时,满足退出循环的条件,故输出的结果为13,故选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答12【答案】B【解析】,圆心直角坐标为(0,-1),极坐标为,选B。二、填空题13【答案】5【解析】考点:利用导数求最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f(x)0或f(x)0求单调区间;第二步:解f(x)0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小14【答案】-2【解析】【知识点】复数乘除和乘方【试题解析】由题知:所以故答案为:-215【答案】150 【解析】解:在RTABC中,CAB=45,BC=100m,所以AC=100m在AMC中,MAC=75,MCA=60,从而AMC=45,由正弦定理得,因此AM=100m在RTMNA中,AM=100m,MAN=60,由得MN=100=150m故答案为:15016【答案】【解析】考点:向量的夹角【名师点睛】平面向量数量积的类型及求法(1)求平面向量的数量积有三种方法:一是定义;二是坐标运算公式;三是利用数量积的几何意义(2)求较复杂的平面向量的数量积的运算时,可先利用平面向量数量积的运算律或相减公式进行化简17【答案】4 【解析】解:由题意知,满足关系式2,3A1,2,3,4的集合A有:2,3,2,3,1,2,3,4,2,3,1,4,故共有4个,故答案为:418【答案】 :【解析】解:对于函数y=2x33x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于点(0,1)的对称点为(x0,2y0)也满足函数的解析式,则正确;对于对x,yR,若x+y0,对应的是直线y=x以外的点,则x1,或y1,正确;对于若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(2,0)连线的斜率,其最大值为,正确;对于若ABC为锐角三角形,则A,B,AB都是锐角,即AB,即A+B,BA,则cosBcos(A),即cosBsinA,故不正确对于在ABC中,G,O分别为ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则ODBC,GD=AD,=|,由则,即则又BC=5则有由余弦定理可得cosC0,即有C为钝角则三角形ABC为钝角三角形;不正确故答案为:三、解答题19【答案】 【解析】解:()平面PAB平面ABCD,平面PAB平面ABCD=AB,ABPAPA平面ABCD结合ABAD,可得分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系oxyz,如图所示可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,) (0),得,DEAC且DEAP,AC、AP是平面PAC内的相交直线,ED平面PACED平面PED平面PED平面PAC()由()得平面PAC的一个法向量是,设直线PE与平面PAC所成的角为,则,解之得=20,=2,可得P的坐标为(0,0,2)设平面PCD的一个法向量为=(x0,y0,z0),由, ,得到,令x0=1,可得y0=z0=1,得=(1,1,1)cos,由图形可得二面角APCD的平面角是锐角,二面角APCD的平面角的余弦值为【点评】本题在四棱锥中证明面面垂直,并且在线面所成角的正弦情况下求二面角APCD的余弦值着重考查了线面垂直、面面垂直的判定定理和利用空间向量研究直线与平面所成角和二面角大小的方法,属于中档题20【答案】 【解析】解:()由42cos2+92sin2=36得4x2+9y2=36,化为;()设P(3cos,2sin),则3x+4y=,R,当sin(+)=1时,3x+4y的最大值为【点评】本题考查了椭圆的极坐标方程、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题21【答案】 【解析】解:()由曲线C1的极坐标方程为(sin+cos)=1,可得它的直角坐标方程为x+y=1,根据曲线C2的参数方程为(为参数),可得它的普通方程为+y2=1()把曲线C1与C2是联立方程组,化简可得 5x28x=0,显然=640,故曲线C1与C2是相交于两个点解方程组求得,或,可得这2个交点的坐标分别为(0,1)、(,)【点评】本题主要考查把极坐标方程化为直角坐标方程,把参数方程化为普通方程的方法,求两条曲线的交点,属于基础题 22【答案】 【解析】()解:设点E(t,t),B(0,1),A(2t,2t+1),点A在椭圆C上,整理得:6t2+4t=0,解得t=或t=0(舍去),E(,),A(,),直线AB的方程为:x+2y+2=0;()证明:设P(x0,y0),则,直线AP方程为:y+=(x+),联立直线AP与直线y=x的方程,解得:xM=,直线BP的方程为:y+1=,联立直线BP与直线y=x的方程,解得:xN=,OMON=|xM|xN|=2|=|=|=|=【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值等问题,考查运算求解能力,注意解题方法的积累,属于中档题23【答案】 【解析】解:()|xa|2,a2xa+2,f(x)2的解集为0,4,a=2()f(x)+f(x+5)=|x2|+|x+3|(x2)(x+3)|=5,x0R,使得,即成立,4m+m2f(x)+f(x+5)min,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年肿瘤内科常见并发症处理模拟测试答案及解析
- 初二物理光学透镜专项练习题
- 纺织工厂安全管理方案
- 医院日间病房运营质量管理规范
- 职业技术学院教学质量评估报告
- 2025年呼吸内科疾病治疗方案设计模拟考核答案及解析
- 主板电路板维修方案
- 幼儿园语言发展评价标准解读
- 2025年呼吸内科手术护理技巧综合测试答案及解析
- 共享电车市场定位规划总结报告
- SYT 6680-2021 石油天然气钻采设备 钻机和修井机出厂验收规范-PDF解密
- 《遗传学》课程标准
- 蛋白质分离纯化及鉴定
- 2024年化粪池清理合同协议书范本
- 实用美术基础中职全套教学课件
- 债权债务法律知识讲座
- 南京财经大学《812西方经济学(宏观经济学、微观经济学)》历年考研真题及详解
- 基于教育培训行业的客户关系营销研究
- 肉制品工艺学-香肠类制品-课件
- 超全QC管理流程图
- 2广告实务课程标准
评论
0/150
提交评论