


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
跟踪演练(五)(建议用时:40分)1(2015衡水二模)设函数f(x)|2x1|2xa|a,xR.(1)当a3时,求不等式f(x)7的解集;(2)对任意xR恒有f(x)3,求实数a的取值范围【解】(1)当a3时,f(x)结合f(x)的图象(图略)可知f(x)7的解集为x|x2(2)f(x)|2x1|a2x|a|2x1a2x|a|a1|a.由f(x)3恒成立,有|a1|a3,解得a2.a的取值范围为2,)2(2015太原二模)已知函数f(x)|2x1|xa|,aR.(1)当a3时,解不等式f(x)4;(2)若f(x)|x1a|,求x的取值范围【解】(1)当a3时,f(x)|2x1|x3|其图象如图所示,与直线y4相交于点A(0,4)和B(2,4),不等式f(x)4的解集为x|0x2(2)f(x)|2x1|xa|(2x1)(xa)|x1a|,f(x)|x1a|(2x1)(xa)0,当a时,x的取值范围是.1(2015郑州二模)已知函数f(x)|3x2|.(1)解不等式f(x)0),若|xa|f(x)(a0)恒成立,求实数a的取值范围【解】(1)不等式f(x)4|x1|,即|3x2|x1|4,当x时,3x2x14,解得x;当x1时,3x2x14,解得x1时,3x2x10),所以(mn)114,当且仅当mn时等号成立令g(x)|xa|f(x)|xa|3x2|则x时,g(x)取得最大值a,要使不等式恒成立,只需g(x)maxa4,解得a,a0,0a.2(2015南昌二模)已知函数f(x)|x1|x|a.(1)当a0时,求不等式f(x)0的解集;(2)若方程f(x)x有三个不同的解,求a的取值范围【解】(1)f(x)|x1|x|当x1时,f(x)10,不合题意;当1x0时,由f(x)2x10,解得x0,符合题意综上,f(x)0的解集为.(2)设u(x)|x1|x|,在同一直角坐标系中,作出yu(x)和yx的图象,如图:易知yu(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 租赁合同担保法律风险规避与合规审查要点
- 大宗固废循环利用技术开发方案
- 数字化在线营销方案策划
- 2025年风电行业市场前瞻:技术创新引领风电运维服务升级报告
- 石嘴山快速门施工方案
- 项目咨询策划方案范文
- DB65T 4332-2020 羊鼻蝇蛆病防治技术规程
- 冻货应急预案(3篇)
- DB65T 4504-2022 马血液梨形虫检测技术规程
- 生物质能源在分布式能源系统中的2025年应用技术创新与市场前景分析报告
- 亚麻籽油在营养保健领域的应用考核试卷
- 《雷军的管理哲学》课件
- 尿液标本临床微生物实验室检验操作指南
- 2024铁路营业线作业人员北斗安全预警防护系统技术条件
- 羊水异常课件
- 煤矿“冬季四防”专项安全风险辨识评估报告
- 小儿链球菌感染护理查房
- 电影《白日梦想家》课件
- 竞聘医疗组长
- 路易斯·康获奖课件
- 正常人体结构课程标准
评论
0/150
提交评论