宜君县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
宜君县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
宜君县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
宜君县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
宜君县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宜君县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若f(x)=x22x4lnx,则f(x)0的解集为( )A(0,+)B(1,0)(2,+)C(2,+)D(1,0)2 高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A34种B35种C120种D140种3 已知全集为,集合,则( )A B C D4 设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为( )A1BCD5 已知函数f(x)是(,0)(0,+)上的奇函数,且当x0时,函数的部分图象如图所示,则不等式xf(x)0的解集是( )A(2,1)(1,2)B(2,1)(0,1)(2,+)C(,2)(1,0)(1,2)D(,2)(1,0)(0,1)(2,+)6 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S的值为( )A9.6B7.68C6.144D4.91527 已知等比数列an的前n项和为Sn,若=4,则=( )A3B4CD138 ABC中,A(5,0),B(5,0),点C在双曲线上,则=( )ABCD9 在中,内角,所对的边分别是,已知,则( )A B C. D10在ABC中,内角A,B,C所对的边分别为a,b,c,已知a=3,A=60,则满足条件的三角形个数为( )A0B1C2D以上都不对11Sn是等差数列an的前n项和,若3a82a74,则下列结论正确的是( )AS1872 BS1976CS2080 DS218412已知向量=(1,2),=(m,1),如果向量与平行,则m的值为( )ABC2D2二、填空题13设A=x|x1或x3,B=x|axa+1,AB=B,则a的取值范围是14函数f(x)=log(x22x3)的单调递增区间为15一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件im中的整数m的值是16如图,在棱长为1的正方体ABCDA1B1C1D1中,M、N分别是A1B1和BB1的中点,那么直线AM和CN所成角的余弦值为17给出下列命题:(1)命题p:;菱形的对角线互相垂直平分,命题q:菱形的对角线相等;则pq是假命题(2)命题“若x24x+3=0,则x=3”的逆否命题为真命题(3)“1x3”是“x24x+30”的必要不充分条件(4)若命题p:xR,x2+4x+50,则p:其中叙述正确的是(填上所有正确命题的序号)18已知点A(2,0),点B(0,3),点C在圆x2+y2=1上,当ABC的面积最小时,点C的坐标为三、解答题19已知梯形ABCD中,ABCD,B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周得到如图所示的几何体(1)求几何体的表面积;(2)点M时几何体的表面上的动点,当四面体MABD的体积为,试判断M点的轨迹是否为2个菱形20已知圆的极坐标方程为24cos()+6=0(1)将极坐标方程化为普通方程;(2)若点P在该圆上,求线段OP的最大值和最小值 21某港口的水深y(米)是时间t(0t24,单位:小时)的函数,下面是每天时间与水深的关系表:t03691215182124y10139.97101310.1710经过长期观测,y=f(t)可近似的看成是函数y=Asint+b(1)根据以上数据,求出y=f(t)的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?22已知函数f(x)=|2x+1|+|2x3|()求不等式f(x)6的解集;()若关于x的不等式f(x)log2(a23a)2恒成立,求实数a的取值范围 23在四棱锥EABCD中,底面ABCD是边长为1的正方形,AC与BD交于点O,EC底面ABCD,F为BE的中点()求证:DE平面ACF;()求证:BDAE24已知奇函数f(x)=(cR)()求c的值;()当x2,+)时,求f(x)的最小值宜君县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:由题,f(x)的定义域为(0,+),f(x)=2x2,令2x20,整理得x2x20,解得x2或x1,结合函数的定义域知,f(x)0的解集为(2,+)故选:C2 【答案】A【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有=34种故选:A【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题3 【答案】A【解析】考点:1、集合的表示方法;2、集合的补集及交集.4 【答案】D【解析】解:设函数y=f(x)g(x)=x2lnx,求导数得=当时,y0,函数在上为单调减函数,当时,y0,函数在上为单调增函数所以当时,所设函数的最小值为所求t的值为故选D【点评】可以结合两个函数的草图,发现在(0,+)上x2lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值5 【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图 则不等式xf(x)0的解为:或解得:x(,2)(1,0)(0,1)(2,+)故选:D6 【答案】C【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(120%)x,结合程序框图易得当n=4时,S=15(120%)4=6.144故选:C7 【答案】D【解析】解:Sn为等比数列an的前n项和,=4,S4,S8S4,S12S8也成等比数列,且S8=4S4,(S8S4)2=S4(S12S8),即9S42=S4(S124S4),解得=13故选:D【点评】熟练掌握等比数列的性质是解题的关键是基础的计算题8 【答案】D【解析】解:ABC中,A(5,0),B(5,0),点C在双曲线上,A与B为双曲线的两焦点,根据双曲线的定义得:|ACBC|=2a=8,|AB|=2c=10,则=故选:D【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目9 【答案】A【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理,余弦定理, 实现边与角的互相转化.10【答案】B【解析】解:a=3,A=60,由正弦定理可得:sinB=1,B=90,即满足条件的三角形个数为1个故选:B【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题11【答案】【解析】选B.3a82a74,3(a17d)2(a16d)4,即a19d4,S1818a118(a1d)不恒为常数S1919a119(a19d)76,同理S20,S21均不恒为常数,故选B.12【答案】B【解析】解:向量,向量与平行,可得2m=1解得m=故选:B二、填空题13【答案】a0或a3 【解析】解:A=x|x1或x3,B=x|axa+1,且AB=B,BA,则有a+11或a3,解得:a0或a3,故答案为:a0或a314【答案】(,1) 【解析】解:函数的定义域为x|x3或x1令t=x22x3,则y=因为y=在(0,+)单调递减t=x22x3在(,1)单调递减,在(3,+)单调递增由复合函数的单调性可知函数的单调增区间为(,1)故答案为:(,1)15【答案】6 【解析】解:第一次循环:S=0+=,i=1+1=2;第二次循环:S=+=,i=2+1=3;第三次循环:S=+=,i=3+1=4;第四次循环:S=+=,i=4+1=5;第五次循环:S=+=,i=5+1=6;输出S,不满足判断框中的条件;判断框中的条件为i6?故答案为:6【点评】本题考查程序框图,尤其考查循环结构对循环体每次循环需要进行分析并找出内在规律本题属于基础题16【答案】 【解析】解:如图,将AM平移到B1E,NC平移到B1F,则EB1F为直线AM与CN所成角设边长为1,则B1E=B1F=,EF=cosEB1F=,故答案为【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题17【答案】(4) 【解析】解:(1)命题p:菱形的对角线互相垂直平分,为真命题命题q:菱形的对角线相等为假命题;则pq是真命题,故(1)错误,(2)命题“若x24x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,(3)由x24x+30得1x3,则“1x3”是“x24x+30”的充要条件,故(3)错误,(4)若命题p:xR,x2+4x+50,则p:正确,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题18【答案】(,) 【解析】解:设C(a,b)则a2+b2=1,点A(2,0),点B(0,3),直线AB的解析式为:3x+2y6=0如图,过点C作CFAB于点F,欲使ABC的面积最小,只需线段CF最短则CF=,当且仅当2a=3b时,取“=”,a=,联立求得:a=,b=,故点C的坐标为(,)故答案是:(,)【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题三、解答题19【答案】 【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=422=8,或S=42+(422)+2=8;(2)由已知SABD=2sin135=1,因而要使四面体MABD的体积为,只要M点到平面ABCD的距离为1,因为在空间中有两个平面到平面ABCD的距离为1,它们与几何体的表面的交线构成2个曲边四边形,不是2个菱形【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目20【答案】 【解析】解:(1)24cos()+6=0,展开为:24(cos+sin)+6=0化为:x2+y24x4y+6=0(2)由x2+y24x4y+6=0可得:(x2)2+(y2)2=2圆心C(2,2),半径r=|OP|=2线段OP的最大值为2+=3最小值为2= 21【答案】 【解析】解:(1)由表中数据可以看到:水深最大值为13,最小值为7,=10,且相隔9小时达到一次最大值说明周期为12,因此,故(0t24)(2)要想船舶安全,必须深度f(t)11.5,即,解得:12k+1t5+12k kZ又0t24当k=0时,1t5;当k=1时,13t17;故船舶安全进港的时间段为(1:005:00),(13:0017:00)【点评】本题主要考查三角函数知识的应用问题解决本题的关键在于求出函数解析式求三角函数的解析式注意由题中条件求出周期,最大最小值等22【答案】 【解析】解:()原不等式等价于或或,解得:x2或x或1x,不等式f(x)6的解集为x|1x2 ()不等式f(x)2恒成立+2f(x)=|2x+1|+|2x3|恒成立+2f(x)min恒成立,|2x+1|+|2x3|(2x+1)(2x3)|=4,f(x)的最小值为4,+24,即,解得:1a0或3a4实数a的取值范围为(1,0)(3,4) 23【答案】【解析】【分析】()连接FO,则OF为BDE的中位线,从而DEOF,由此能证明DE平面ACF()推导出BDAC,ECBD,从而BD平面ACE,由此能证明BDAE【解答】证明:()连接FO,底面ABCD是正方形,且O为对角线AC和BD交点,O为BD的中点,又F为BE中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论