开江县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
开江县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
开江县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
开江县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
开江县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

开江县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知集合,则( )A B C D【命题意图】本题考查集合的交集运算,意在考查计算能力2 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A至少有一个白球;都是白球B至少有一个白球;至少有一个红球C恰有一个白球;一个白球一个黑球D至少有一个白球;红、黑球各一个3 如果点P(sincos,2cos)位于第二象限,那么角所在象限是( )A第一象限B第二象限C第三象限D第四象限4 线段AB在平面内,则直线AB与平面的位置关系是( )AABBABC由线段AB的长短而定D以上都不对5 设a是函数x的零点,若x0a,则f(x0)的值满足( )Af(x0)=0Bf(x0)0Cf(x0)0Df(x0)的符号不确定6 已知是球的球面上两点,为该球面上的动点,若三棱锥体积的最大值为,则球的体积为( )ABCD【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力7 定义运算:例如,则函数的值域为( )A B C D8 等差数列an中,a1+a5=10,a4=7,则数列an的公差为( )A1B2C3D49 设f(x)(exex)(),则不等式f(x)f(1x)的解集为( )A(0,) B(,)C(,) D(,0)10在平面直角坐标系中,直线y=x与圆x2+y28x+4=0交于A、B两点,则线段AB的长为( )A4B4C2D211某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A. B4C.D12某个几何体的三视图如图所示,该几何体的表面积为9214,则该几何体的体积为( )A8020B4020C6010D8010二、填空题13ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60,b=2,则c的值为14已知函数,是函数的一个极值点,则实数 15函数f(x)=ax+4的图象恒过定点P,则P点坐标是16在数列中,则实数a=,b=17在ABC中,点D在边AB上,CDBC,AC=5,CD=5,BD=2AD,则AD的长为18在直三棱柱中,ACB=90,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为( )ABCD三、解答题19设函数f(x)=lg(axbx),且f(1)=lg2,f(2)=lg12(1)求a,b的值(2)当x1,2时,求f(x)的最大值(3)m为何值时,函数g(x)=ax的图象与h(x)=bxm的图象恒有两个交点 20若an的前n项和为Sn,点(n,Sn)均在函数y=的图象上(1)求数列an的通项公式;(2)设,Tn是数列bn的前n项和,求:使得对所有nN*都成立的最大正整数m21(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在岁间,旅游途中导游发现该旅游散团人人都会使用微信,所有团员的年龄结构按分成5组,分别记为,其频率分布直方图如下图所示()根据频率分布直方图,估计该旅游散团团员的平均年龄;()该团导游首先在三组中用分层抽样的方法抽取了名团员负责全团协调,然后从这6名团员中随机选出2名团员为主要协调负责人,求选出的2名团员均来自组的概率22设f(x)=2x3+ax2+bx+1的导数为f(x),若函数y=f(x)的图象关于直线x=对称,且f(1)=0()求实数a,b的值()求函数f(x)的极值23在ABC中,内角A,B,C所对的边分别是a,b,c,已知tanA=,c=()求;()若三角形ABC的面积为,求角C24求下列各式的值(不使用计算器):(1);(2)lg2+lg5log21+log39开江县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】当时,所以,故选C2 【答案】D【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况,所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥;至少有一个白球,没有白球互斥且对立;至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,故选:D【点评】本题考查了互斥事件和对立事件,是基础的概念题3 【答案】D【解析】解:P(sincos,2cos)位于第二象限,sincos0,cos0,sin0,是第四象限角故选:D【点评】本题考查了象限角的三角函数符号,属于基础题4 【答案】A【解析】解:线段AB在平面内,直线AB上所有的点都在平面内,直线AB与平面的位置关系:直线在平面内,用符号表示为:AB故选A【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力公理一:如果一条线上的两个点在平面上则该线在平面上5 【答案】C【解析】解:作出y=2x和y=logx的函数图象,如图:由图象可知当x0a时,2logx0,f(x0)=2logx00故选:C6 【答案】D【解析】当平面平面时,三棱锥的体积最大,且此时为球的半径设球的半径为,则由题意,得,解得,所以球的体积为,故选D7 【答案】D【解析】考点:1、分段函数的解析式;2、三角函数的最值及新定义问题. 8 【答案】B【解析】解:设数列an的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B9 【答案】【解析】选C.f(x)的定义域为xR,由f(x)(exex)()得f(x)(exex)()(exex)()(exex)()f(x),f(x)在R上为偶函数,不等式f(x)f(1x)等价于|x|1x|,即x212xx2,x,即不等式f(x)f(1x)的解集为x|x,故选C.10【答案】A【解析】解:圆x2+y28x+4=0,即圆(x4)2+y2 =12,圆心(4,0)、半径等于2由于弦心距d=2,弦长为2=4,故选:A【点评】本题主要考查求圆的标准方程的方法,直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题11【答案】【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V23221,故选D.12【答案】【解析】解析:选D.该几何体是在一个长方体的上面放置了半个圆柱依题意得(2r2rr2)252r252rr59214, 即(8)r2(305)r(9214)0,即(r2)(8)r4670,r2,该几何体的体积为(4422)58010.二、填空题13【答案】 【解析】解:ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60,b=2,由正弦定理可得:,解得:a=3,利用余弦定理:a2=b2+c22bccosA,可得:9=4+c22c,即c22c5=0,解得:c=1+,或1(舍去)故答案为:【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题14【答案】5【解析】试题分析:考点:导数与极值15【答案】(0,5) 【解析】解:y=ax的图象恒过定点(0,1),而f(x)=ax+4的图象是把y=ax的图象向上平移4个单位得到的,函数f(x)=ax+4的图象恒过定点P(0,5),故答案为:(0,5)【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题16【答案】a=,b= 【解析】解:由5,10,17,ab,37知,ab=26,由3,8,a+b,24,35知,a+b=15,解得,a=,b=;故答案为:,【点评】本题考查了数列的性质的判断与归纳法的应用17【答案】5 【解析】解:如图所示:延长BC,过A做AEBC,垂足为E,CDBC,CDAE,CD=5,BD=2AD,解得AE=,在RTACE,CE=,由得BC=2CE=5,在RTBCD中,BD=10,则AD=5,故答案为:5【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题18【答案】 【解析】解:法1:取A1C1的中点D,连接DM,则DMC1B1,在在直三棱柱中,ACB=90,DM平面AA1C1C,则MAD是AM与平面AA1C1C所的成角,则DM=,AD=,则tanMAD=法2:以C1点坐标原点,C1A1,C1B1,C1C分别为X,Y,Z轴正方向建立空间坐标系,则AC=BC=1,侧棱AA1=,M为A1B1的中点,=(,),=(0,1,0)为平面AA1C1C的一个法向量设AM与平面AA1C1C所成角为,则sin=|=则tan=故选:A【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键三、解答题19【答案】 【解析】解:(1)f(x)=lg(axbx),且f(1)=lg2,f(2)=lg12,ab=2,a2b2=12,解得:a=4,b=2;(2)由(1)得:函数f(x)=lg(4x2x),当x1,2时,4x2x2,12,故当x=2时,函数f(x)取最大值lg12,(3)若函数g(x)=ax的图象与h(x)=bxm的图象恒有两个交点则4x2x=m有两个解,令t=2x,则t0,则t2t=m有两个正解;则,解得:m(,0)【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键20【答案】 【解析】解:(1)由题意知:Sn=n2n,当n2时,an=SnSn1=3n2,当n=1时,a1=1,适合上式,则an=3n2;(2)根据题意得:bn=,Tn=b1+b2+bn=1+=1,Tn在nN*上是增函数,(Tn)min=T1=,要使Tn对所有nN*都成立,只需,即m15,则最大的正整数m为1421【答案】【解析】【命题意图】本题考查频率分布直方图与平均数、分层抽样、古典概型等基础知识,意在考查审读能力、识图能力、获取数据信息的能力22【答案】 【解析】解:()因f(x)=2x3+ax2+bx+1,故f(x)=6x2+2ax+b从而f(x)=6y=f(x)关于直线x=对称,从而由条件可知=,解得a=3又由于f(x)=0,即6+2a+b=0,解得b=12()由()知f(x)=2x3+3x212x+1f(x)=6x2+6x12=6(x1)(x+2)令f(x)=0,得x=1或x=2当x(,2)时,f(x)0,f(x)在(,2)上是增函数;当x(2,1)时,f(x)0,f(x)在(2,1)上是减函数;当x(1,+)时,f(x)0,f(x)在(1,+)上是增函数从而f(x)在x=2处取到极大值f(2)=21,在x=1处取到极小值f(1)=623【答案】 【解析】解:()由题意知,tanA=,则=,即有sinAsinAcosC=cosAsinC,所以sinA=sinAcosC+cosAsinC=sin(A+C)=sinB,由正弦定理,a=b,则=1;()因为三角形ABC的面积为,a=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论