




已阅读5页,还剩62页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上篇 专题整合突破 专题一 函数与导数、不等式教书用书 文第1讲函数、函数与方程及函数的应用高考定位高考对本内容的考查主要有:(1)函数的概念和函数的基本性质是B级要求,是重要考点;(2)指数与对数的运算、指数函数与对数函数的图象和性质都是考查热点,要求都是B级;(3)函数与方程是B级要求,但经常与二次函数等基本函数的图象和性质综合起来考查,是重要考点;(4)函数模型及其应用是考查热点,要求是B级;试题类型可能是填空题,也可能在解答题中与函数性质、导数、不等式综合考查.真 题 感 悟1.(2016江苏卷)函数y的定义域是_.解析要使函数有意义,需且仅需32xx20,解得3x1.故函数定义域为3,1.答案3,12.(2016江苏卷)设f(x)是定义在R上且周期为2的函数,在区间1,1)上,f(x)其中aR.若ff,则f(5a)的值是_.解析由已知fffa,fff.又ff,则a,a,f(5a)f(3)f(34)f(1)1.答案3.(2014江苏卷)已知f(x)是定义在R上且周期为3的函数,当x0,3)时,f(x).若函数yf(x)a在区间3,4上有10个零点(互不相同),则实数a的取值范围是_.解析作出函数yf(x)在3,4上的图象,f(3)f(2)f(1)f(0)f(1)f(2)f(3)f(4),观察图象可得0a.答案4.(2015江苏卷)已知函数f(x)|ln x|,g(x)则方程|f(x)g(x)|1实根的个数为_.解析令h(x)f(x)g(x),则h(x)当1x2时,h(x)2x0,故当1x2时h(x)单调递减,在同一坐标系中画出y|h(x)|和y1的图象如图所示.由图象可知|f(x)g(x)|1的实根个数为4.答案4考 点 整 合1.函数的性质(1)单调性()用来比较大小,求函数最值,解不等式和证明方程根的唯一性.()常见判定方法:定义法:取值、作差、变形、定号,其中变形是关键,常用的方法有:通分、配方、因式分解;图象法;复合函数的单调性遵循“同增异减”的原则;导数法.(2)奇偶性:若f(x)是偶函数,那么f(x)f(x);若f(x)是奇函数,0在其定义域内,则f(0)0;奇函数在关于原点对称的区间内有相同的单调性,偶函数在关于原点对称的区间内有相反的单调性;(3)周期性:常见结论有若yf(x)对xR,f(xa)f(xa)或f(x2a)f(x)(a0)恒成立,则yf(x)是周期为2a的周期函数;若yf(x)是偶函数,其图象又关于直线xa对称,则f(x)是周期为2|a|的周期函数;若yf(x)是奇函数,其图象又关于直线xa对称,则f(x)是周期为4|a|的周期函数;若f(xa)f(x),则yf(x)是周期为2|a|的周期函数.2.函数的图象(1)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换.(2)在研究函数性质特别是单调性、值域、零点时,要注意结合其图象研究.3.求函数值域有以下几种常用方法:(1)直接法;(2)配方法;(3)基本不等式法;(4)单调性法;(5)求导法;(6)分离变量法.除了以上方法外,还有数形结合法、判别式法等.4.函数的零点问题(1)函数F(x)f(x)g(x)的零点就是方程f(x)g(x)的根,即函数yf(x)的图象与函数yg(x)的图象交点的横坐标.(2)确定函数零点的常用方法:直接解方程法;利用零点存在性定理;数形结合,利用两个函数图象的交点求解.5.应用函数模型解决实际问题的一般程序与函数有关的应用题,经常涉及到物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题.解答这类问题的关键是确切的建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.热点一函数性质的应用【例1】 (1)已知定义在R上的函数f(x)2|xm|1(m为实数)为偶函数,记af(log0.53),bf(log25),cf(2m),则a,b,c的大小关系为_(从小到大排序).(2)(2016全国卷改编)已知函数f(x)(xR)满足f(x)2f(x),若函数y与yf(x)图象的交点为(x1,y1),(x2,y2),(xm,ym),则(xiyi)_.解析(1)由f(x)2|xm|1是偶函数可知m0,所以f(x)2|x|1.所以af(log0.53)2|log0.53|12log2312,bf(log25)2|log25|12log2514,cf(0)2|0|10,所以cab.(2)由题设得(f(x)f(x)1,点(x,f(x)与点(x,f(x)关于点(0,1)对称,则yf(x)的图象关于点(0,1)对称.又y1,x0的图象也关于点(0,1)对称.则交点(x1,y1),(x2,y2),(xm,ym)成对出现,且每一对关于点(0,1)对称.则+=02m.答案(1)cab(2)m探究提高(1)可以根据函数的奇偶性和周期性,将所求函数值转化为给出解析式的范围内的函数值.(2)利用函数的对称性关键是确定出函数图象的对称中心(对称轴).【训练1】 (1)(2015全国卷)若函数f(x)xln(x)为偶函数,则a_.(2)(2016四川卷)已知函数f(x)是定义在R上的周期为2的奇函数,当0x1时,f(x)4x,则ff(1)_.解析(1)f(x)为偶函数,则ln(x)为奇函数,所以ln(x)ln(x)0,即ln(ax2x2)0,a1.(2)因为f(x)是周期为2的奇函数,所以f(1)f(1)f(1),即f(1)0,又fff42,从而ff(1)2.答案(1)1(2)2热点二函数图象的应用【例2】 (1)(2016苏北四市调研)已知函数f(x)若|f(x)|ax,则实数a的取值范围是_.(2)(2015全国卷改编)设函数f(x)ex(2x1)axa,其中a1,若存在唯一的整数x0使得f(x0)0,则实数a的取值范围是_.解析(1)函数y|f(x)|的图象如图.yax为过原点的一条直线,当a0时,与y|f(x)|在y轴右侧总有交点,不合题意;当a0时成立;当a0时,找与y|x22x|(x0)相切的情况,即y2x2,切线方程为y(2x02)(xx0),由分析可知x00,所以a2,综上,a2,0.(2)设g(x)ex(2x1),h(x)axa,由题知存在唯一的整数x0,使得g(x0)ax0a,因为g(x)ex(2x1),可知g(x)在上单调递减,在上单调递增,作出g(x)与h(x)的大致图象如图所示,故即所以a1.答案(1)2,0(2)探究提高(1)涉及到由图象求参数问题时,常需构造两个函数,借助两函数图象求参数范围.(2)图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.【训练2】 (2016苏、锡、常、镇调研)设奇函数f(x)在(0,)上为增函数,且f(2)0,则不等式0,在(,2)和(0,2)上f(x)0时,由0,可得f(x)f(x)2f(x)0,结合图象可知(0,2)符合;当x0时,由0,结合图象可知(2,0)符合.答案(2,0)(0,2)热点三函数与方程问题微题型1函数零点个数的求解【例31】 (2016南京、盐城模拟)函数f(x)4cos2cos2sin x|ln(x1)|的零点个数为_.解析f(x)4cos2sin x2sin x|ln(x1)|2sin x|ln(x1)|sin 2x|ln(x1)|,令f(x)0,得sin 2x|ln(x1)|.在同一坐标系中作出两个函数ysin 2x与函数y|ln(x1)|的大致图象如图所示.观察图象可知,两函数图象有2个交点,故函数f(x)有2个零点.答案2探究提高解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.微题型2由函数的零点(或方程的根)求参数【例32】 (1)(2016南京三模)设函数f(x)g(x)f(x)b.若存在实数b,使得函数g(x)恰有3个零点,则实数a的取值范围为_.(2)已知函数f(x)函数g(x)bf(2x),其中bR,若函数yf(x)g(x)恰有4个零点,则b的取值范围是_.解析(1)当f(x)时,f(x),由f(x)0得x2,且当x2时,f(x)0,f(x)单调递增,当x2时,f(x)0,f(x)单调递减,则当x2时,f(x)有极大值f(2).当x1时,x1.结合图象可得当存在实数b使得g(x)f(x)b恰有3个零点时,1a2.(2)函数yf(x)g(x)恰有4个零点,即方程f(x)g(x)0,即bf(x)f(2x)有4个不同实数根,即直线yb与函数yf(x)f(2x)的图象有4个不同的交点,又yf(x)f(2x)作出该函数的图象如图所示,由图可知,当b2时,直线yb与函数yf(x)f(2x)的图象有4个不同的交点,故函数yf(x)g(x)恰有4个零点时,b的取值范围是.答案(1)(2)探究提高利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.【训练3】 (2016泰州调研)设函数f(x)x23x3aex(a为非零实数),若f(x)有且仅有一个零点,则a的取值范围为_.解析令f(x)0,可得a,令g(x),则g(x),令g(x)0,可得x(1,0),令g(x)0,可得x(,1)(0,),所以g(x)在(1,0)上单调递增,在(,1)和(0,)上单调递减.由题意知函数yg(x)的图象与直线ya有且仅有一个交点,结合yg(x)及ya的图象可得a(0,e)(3,).答案(0,e)(3,)热点四函数的实际应用问题【例4】 (2016江苏卷)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥PA1B1C1D1,下部分的形状是正四棱柱ABCDA1B1C1D1(如图所示),并要求正四棱柱的高OO1是正四棱锥的高PO1的4倍.(1)若AB6 m,PO12 m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m,则当PO1为多少时,仓库的容积最大?解(1)V6226224312(m3).(2)设PO1x,则O1B1,B1C1,S正方形A1B1C1D12(62x2).又由题意可得下面正四棱柱的高为4x,则仓库容积Vx2(62x2)2(62x2)4xx(36x2).由V0得x2或x2(舍去).由实际意义知V在x2(m)时取到最大值,故当PO12(m)时,仓库容积最大.探究提高(1)关于解决函数的实际应用问题,首先要在阅读上下功夫,一般情况下,应用题文字叙述比较长,要耐心、细心地审清题意,弄清各量之间的关系,再建立函数关系式,然后借助函数的知识求解,解答后再回到实际问题中去.(2)对函数模型求最值的常用方法:单调性法、基本不等式法及导数法.【训练4】 (2016南京学情调研)某市对城市路网进行改造,拟在原有a个标段(注:一个标段是指一定长度的机动车道)的基础上,新建x个标段和n个道路交叉口,其中n与x满足nax5.已知新建一个标段的造价为m万元,新建一个道路交叉口的造价是新建一个标段的造价的k倍.(1)写出新建道路交叉口的总造价y(万元)与x的函数关系式;(2)设P是新建标段的总造价与新建道路交叉口的总造价之比.若新建的标段数是原有标段数的20%,且k3.问:P能否大于,说明理由.解(1)依题意得ymknmk(ax5),xN*.(2)法一依题意x0.2a,所以P.P不可能大于.法二依题意x0.2a,所以P.假设P,则ka220a25k0.因为k3,所以100(4k2)0,不等式ka220a25k0无解,假设不成立.P不可能大于.1.解决函数问题忽视函数的定义域或求错函数的定义域,如求函数f(x)的定义域时,只考虑x0,忽视ln x0的限制.2.如果一个奇函数f(x)在原点处有意义,即f(0)有意义,那么一定有f(0)0.3.三招破解指数、对数、幂函数值的大小比较.(1)底数相同,指数不同的幂用指数函数的单调性进行比较;(2)底数相同,真数不同的对数值用对数函数的单调性比较;(3)底数不同、指数也不同,或底数不同,真数也不同的两个数,常引入中间量或结合图象比较大小.4.对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.一、填空题1.(2016南通调研)函数f(x)ln x的定义域为_.解析要使函数f(x)ln x有意义,则解得0x1,即函数定义域是(0,1.答案(0,12.(2011江苏卷)函数f(x)log5(2x1)的单调增区间是_.解析函数f(x)的定义域为,令t2x1(t0).因为ylog5t在t(0,)上为增函数,t2x1在上为增函数,所以函数ylog5(2x1)的单调增区间为.答案3.(2016苏州调研)函数f(x)的值域为_.解析当x0时,y2x(0,1;当x0时,yx21(,1).综上, 该函数的值域为(,1.答案(,14.(2016江苏卷)定义在区间0,3上的函数ysin 2x的图象与ycos x的图象的交点个数是_.解析在区间0,3上分别作出ysin 2x和ycos x的简图如下:由图象可得两图象有7个交点.答案75.(2012江苏卷)设f(x)是定义在R上且周期为2的函数,在区间1,1上,f(x)其中a,bR.若ff,则a3b的值为_.解析因为函数f(x)是周期为2的函数,所以f(1)f(1)a1,又fffa1,联立列成方程组解得a2,b4,所以a3b21210.答案106.已知函数f(x)x3x,对任意的m2,2,f(mx2)f(x)0,f(x)在R上为增函数.又f(x)为奇函数,由f(mx2)f(x)0知,f(mx2)f(x).mx2x,即mxx20,令g(m)mxx2,由m2,2知g(m)0恒成立,可得2x.答案7.已知函数f(x)其中x表示不超过x的最大整数.若直线yk(x1)(k0)与函数yf(x)的图象恰有三个不同的交点,则实数k的取值范围是_.解析根据x表示的意义可知,当0x1时,f(x)x,当1x2时,f(x)x1,当2x3时,f(x)x2,以此类推,当kxk1时,f(x)xk,kZ,当1x0时,f(x)x1,作出函数f(x)的图象如图,直线yk(x1)过点(1,0),当直线经过点(3,1)时恰有三个交点,当直线经过点(2,1)时恰好有两个交点,在这两条直线之间时有三个交点,故k.答案8.(2016北京海淀区二模)设函数f(x)(1)若a1,则f(x)的最小值为_;(2)若f(x)恰有2个零点,则实数a的取值范围是_.解析(1)当a1时,f(x)当x1时,f(x)2x1(1,1),当x1时,f(x)4(x23x2)41,f(x)min1.(2)由于f(x)恰有2个零点,分两种情况讨论:当f(x)2xa,x1没有零点时,a2或a0.当a2时,f(x)4(xa)(x2a),x1时,有2个零点;当a0时,f(x)4(xa)(x2a),x1时无零点.因此a2满足题意.当f(x)2xa,x1有一个零点时, 0a2.f(x)4(xa)(x2a),x1有一个零点,此时a1, 2a1,因此a0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.解(1)令y0,得kx(1k2)x20,由实际意义和题设条件知x0,k0,故x10,当且仅当k1时取等号.所以炮的最大射程为10千米.(2)因为a0,所以炮弹可击中目标存在k0,使3.2ka(1k2)a2成立关于k的方程a2k220aka2640有正根判别式(20a)24a2(a264)0a6.所以当a不超过6千米时,可击中目标.11.(2016苏北四市调研)如图,OA是南北方向的一条公路,OB是北偏东45方向的一条公路,某风景区的一段边界为曲线C.为方便游客观光,拟过曲线C上某点P分别修建与公路OA,OB垂直的两条道路PM,PN,且PM,PN的造价分别为5万元/百米、40万元/百米.建立如图所示的平面直角坐标系xOy,则曲线C符合函数模型yx(1x9),设PMx,修建两条道路PM,PN的总造价为f(x)万元.题中所涉及长度单位均为百米.(1)求f(x)的解析式;(2)当x为多少时,总造价f(x)最低?并求出最低造价.解(1)在如题图所示的直角坐标系中,因为曲线C的方程为yx(1x9),PMx,所以点P坐标为,直线OB的方程为xy0,则点P到直线xy0的距离为,又PM的造价为5万元/百米,PN的造价为40万元/百米.则两条道路总造价为f(x)5x405(1x9).(2)因为f(x)5,所以f(x)5,令f(x)0,解得x4,列表如下:x(1,4)4(4,9)f(x)0f(x)极小值所以当x4时,函数f(x)有最小值,且最小值为f(4)530,即当x4时,总造价最低,最低造价为30万元.(注:利用三次均值不等式得f(x)555330,当且仅当x4时,等号成立,同样正确.)第2讲不等式问题高考定位高考对本内容的考查主要有:(1)一元二次不等式是C级要求,要求在初中所学二次函数的基础上,掌握二次函数、二次不等式、二次方程之间的联系和区别,可以单独考查,也可以与函数、方程等构成综合题;(2)线性规划的要求是A级,理解二元一次不等式对应的平面区域,能够求线性目标函数在给定区域上的最值,同时对一次分式型函数、二次型函数的最值也要有所了解;(3)基本不等式是C级要求,理解基本不等式在不等式证明、函数最值的求解方面的重要应用.真 题 感 悟1.(2015江苏卷)不等式2x2x4的解集为_.解析2x2x422,x2x2,即x2x20,解得1x2.答案x|1x22.(2014江苏卷)已知函数f(x)x2mx1,若对于任意xm,m1,都有f(x)0成立,则实数m的取值范围是_.解析二次函数f(x)对于任意xm,m1,都有f(x)0成立,则有解得m0时,f(x)x24x,则不等式f(x)x的解集用区间表示为_.(2)(2012江苏卷)已知函数f(x)x2axb(a,bR)的值域为0,),若关于x的不等式f(x)c的解集为(m,m6),则实数c的值为_.解析(1)由已知得f(0)0,当xx等价于或解得:x5或5x0.(2)由题意知f(x)x2axbb.f(x)的值域为0,),b0,即b.f(x).由f(x)c,得x,又f(x)c的解集为(m,m6),得26,c9.答案(1)(5,0)(5,)(2)9探究提高解一元二次不等式一般要先判断二次项系数的正负也即考虑对应的二次函数图象的开口方向,再考虑方程根的个数也即求出其判别式的符号,有时还需要考虑其对称轴的位置,根据条件列出方程组或结合对应的函数图象求解.【训练1】 已知一元二次不等式f(x)0的解集为_.解析依题意知f(x)0的解为1x,故010x,解得xlglg 2.答案x|xlg 2热点二利用基本不等式求最值微题型1基本不等式的简单应用【例21】 (1)(2016南师附中模拟)设正实数x,y,z满足x23xy4y2z0,则当取得最大值时,的最大值为_.(2)已知正项等比数列an满足a7a62a5,若存在两项am,an使得4a1,则的最小值为_.解析(1)由已知得zx23xy4y2,(*)则1,当且仅当x2y时取等号,把x2y代入(*)式,得z2y2,所以11.所以当y1时,的最大值为1.(2)设等比数列an的公比为q(q0),a7a62a5,a5q2a5q2a5,q2q20,解得q2或q1(舍去).4a1,平方得2mn21624,mn6,(mn)(54),当且仅当,即n2m,亦即m2,n4时取等号.答案(1)1(2)探究提高在利用基本不等式时往往都需要变形,变形的原则是在已知条件下通过变形凑出基本不等式应用的条件,即“和”或“积”为定值,等号能够取得.微题型2基本不等式在实际问题中的应用【例22】 (2016南通调研)如图,在C城周边已有两条公路l1,l2在点O处交汇.已知OC()km,AOB75,AOC45,现规划在公路l1,l2上分别选择A,B两处为交汇点(异于点O)直接修建一条公路通过C城.设OAx km,OBy km.(1)求y关于x的函数关系式并指出它的定义域;(2)试确定点A,B的位置,使OAB的面积最小.解(1)因为AOC的面积与BOC的面积之和等于AOB的面积,所以x()sin 45y()sin 30xysin 75 ,即x()y()xy,所以y(x2).(2)AOB的面积Sxysin 75xy(x24)84(1).当且仅当x4时取等号,此时y4.故OA4 km,OB4 km时,OAB面积的最小值为4(1) km2.探究提高在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.【训练2】 (1)已知向量a(3,2),b(x,y1),且ab,若x,y均为正数,则的最小值是_.(2)若直线2axby20(a0,b0)被圆x2y22x4y10截得的弦长为4,则的最小值是_.解析(1)ab,3(y1)2x0,即2x3y3.x0,y0,(2x3y)(1226)8.当且仅当3y2x时取等号.(2)易知圆x2y22x4y10的半径为2,圆心为(1,2),因为直线2axby20(a0,b0)被圆x2y22x4y10截得的弦长为4,所以直线2axby20(a0,b0)过圆心,把圆心坐标代入得ab1,所以(ab)24,当且仅当,ab1,即ab时等号成立.答案(1)8(2)4热点三含参不等式恒成立问题微题型1分离参数法解决恒成立问题【例31】 (1)关于x的不等式x1a22a0对x(0,)恒成立,则实数a的取值范围为_.(2)已知x0,y0,xy3xy,且不等式(xy)2a(xy)10恒成立,则实数a的取值范围是_.解析(1)设f(x)x,因为x0,所以f(x)x24.又关于x的不等式x1a22a0对x(0,)恒成立,所以a22a14,解得1a3,所以实数a的取值范围为(1,3).(2)要使(xy)2a(xy)10恒成立,则有(xy)21a(xy),即a(xy)恒成立.由xy3xy,得xy3xy,即(xy)24(xy)120,解得xy6或xy2(舍去).设txy,则t6,(xy)t.设f(t)t,则在t6时,f(t)单调递增,所以f(t)t的最小值为6,所以a,即实数a的取值范围是.答案(1)(1,3)(2)探究提高对于含参数的不等式恒成立问题,常通过分离参数,把求参数的范围化归为求函数的最值问题,af(x)恒成立af(x)max;af(x)恒成立af(x)min.微题型2函数法解决恒成立问题【例32】 (1)已知f(x)x22ax2,当x1,)时,f(x)a恒成立,则a的取值范围为_.(2)已知二次函数f(x)ax2x1对x0,2恒有f(x)0.则实数a的取值范围为_.解析(1)法一f(x)(xa)22a2,此二次函数图象的对称轴为xa,当a(,1)时,结合图象知,f(x)在1,)上单调递增,f(x)minf(1)2a3.要使f(x)a恒成立,只需f(x)mina,即2a3a,解得3a1;当a1,)时,f(x)minf(a)2a2,由2a2a,解得2a1.1a1.综上所述,所求a的取值范围为3,1.法二设g(x)f(x)a,则g(x)x22ax2a0在1,)上恒成立,即4a24(2a)0或解得3,1.(2)法一函数法.若a0,则对称轴x0,故f(x)在0,2上为增函数,且f(0)1,因此在x0,2上恒有f(x)0成立.若a0,则应有f(2)0,即4a30,a.a0.综上所述,a的取值范围是(0,).法二分离参数法.当x0时,f(x)10成立.当x0时,ax2x10变为a,令g(x).当时,g(x).a,a.又a0,a的取值范围是(0,).答案(1)3,1(2)(0,)探究提高参数不易分离的恒成立问题,特别是与二次函数有关的恒成立问题的求解,常用的方法是借助函数图象根的分布,转化为求函数在区间上的最值或值域问题.【训练3】 (1)若不等式x2ax10对于一切a2,2恒成立,则x的取值范围是_.(2)已知不等式|a2a|对于x2,6恒成立,则a的取值范围是_.解析(1)因为a2,2,可把原式看作关于a的一次函数,即g(a)xax210,由题意可知解之得xR.(2)设y,y0,故y在x2,6上单调递减,即ymin,故不等式|a2a|对于x2,6恒成立等价于|a2a|恒成立,化简得解得1a2,故a的取值范围是1,2.答案(1)R(2)1,2热点四简单的线性规划问题【例4】 (1)(2016北京卷改编)若x,y满足则2xy的最大值为_.(2)(2016苏北四市调研)设实数n6,若不等式2xm(2x)n80对任意x4,2都成立,则的最小值为_.解析(1)不等式组表示的可行域如图中阴影部分所示.令z2xy,则y2xz,作直线2xy0并平移,当直线过点A时,截距最大,即z取得最大值,由得所以A点坐标为(1,2),可得2xy的最大值为2124.(2)因为不等式2xm(2x)n80即为(2mn)x82n,对任意x4,2都成立,所以所以m,n满足的不等式组为所以点(m,n)对应的平面区域如图,的几何意义是可行域上的点与原点的连线的斜率,所以,而目标函数,令t,则目标函数即为yt3,其导数y3t20,所以函数yt3在t上递减,故t3时取得最小值.答案(1)4(2)探究提高线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.【训练4】 (2016苏、锡、常、镇调研)已知x,y满足且目标函数z2xy的最小值为1,则实数a的值是_.解析依题意,不等式组所表示的可行域如图所示(阴影部分),观察图象可知,当目标函数z2xy过点B(a,a)时,zmin2aa3a;因为目标函数z2xy的最小值为1,所以3a1,解得a.答案1.多次使用基本不等式的注意事项当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性,否则就会出错,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法.2.基本不等式除了在填空题考查外,在解答题的关键步骤中也往往起到“巧解”的作用,但往往需先变换形式才能应用.3.解决线性规划问题首先要作出可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.4.解答不等式与导数、数列的综合问题时,不等式作为一种工具常起到关键的作用,往往涉及到不等式的证明方法(如比较法、分析法、综合法、放缩法、换元法等).在求解过程中,要以数学思想方法为思维依据,并结合导数、数列的相关知识解题,在复习中通过解此类问题,体会每道题中所蕴含的思想方法及规律,逐步提高自己的逻辑推理能力.一、填空题1.(2015苏州调研)已知f(x)则不等式f(x2x1)12的解集是_.解析依题意得,函数f(x)是R上的增函数且f(3)12,因此不等式f(x2x1)12等价于x2x13,即x2x20,由此解得1x2.因此,不等式f(x2x1)12的解集是(1,2).答案(1,2)2.若点A(m,n)在第一象限,且在直线1上,则mn的最大值是_.解析因为点A(m,n)在第一象限,且在直线1上,所以m,n0,且1,所以,所以,即mn3,所以mn的最大值为3.答案33.(2016苏北四市模拟)已知函数f(x)若f(a)f(a)2f(1),则实数a的取值范围是_.解析f(a)f(a)2f(1)或即或解得0a1,或1a0.故1a1.答案1,14.已知函数f(x)那么不等式f(x)1的解集为_.解析当x0时,由log3x1可得x3,当x0时,由1可得x0,不等式f(x)1的解集为(,03,).答案(,03,)5.(2016南京、盐城模拟)若x,y满足不等式组则的最小值是_.解析不等式组所表示的平面区域如图阴影部分所示,表示原点(0,0)到此区域内的点P(x,y)的距离.显然该距离的最小值为原点到直线x2y20的距离.故最小值为.答案6.已知当x0时,2x2mx10恒成立,则m的取值范围为_.解析由2x2mx10,得mx2x21,因为x0,所以m2x.而2x22.当且仅当2x,即x时取等号,所以m2.答案(2,)7.设目标函数zxy,其中实数x,y满足若z的最大值为12,则z的最小值为_.解析作出不等式组所表示的可行域如图阴影所示,平移直线xy0,显然当直线过点A(k,k)时,目标函数zxy取得最大值,且最大值为kk12,则k6,直线过点B时目标函数zxy取得最小值,点B为直线x2y0与y6的交点,即B(12,6),所以zmin1266.答案68.(2016泰州调研)已知x0,y0,且1,若x2ym22m恒成立,则实数m的取值范围为_.解析记tx2y,由不等式恒成立可得m22mtmin.因为1,所以tx2y(x2y)4.而x0,y0,所以24(当且仅当,即x2y时取等号).所以t4448,即tmin8.故m22m8,即(m2)(m4)0.解得4m2.答案(4,2)二、解答题9.(2015苏北四市调研)某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O为圆心的两个同心圆弧和延长后通过点O的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x米,圆心角为(弧度).(1)求关于x的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y,求y关于x的函数关系式,并求出x为何值时,y取得最大值?解(1)设扇环的圆心角为,则30(10x)2(10x),所以(0x10).(2)花坛的面积为(102x2)(5x)(10x)x25x50(0x10).装饰总费用为9(10x)8(10x)17010x,所以花坛的面积与装饰总费用的比y,令t17x,则y,当且仅当t18时取等号,此时x1,.答:当x1时,花坛的面积与装饰总费用的比最大.10.已知函数f(x).(1)若f(x)k的解集为x|x3,或x2,求k的值;(2)对任意x0,f(x)t恒成立,求t的取值范围.解(1)f(x)kkx22x6k0.由已知x|x3,或x2是其解集,得kx22x6k0的两根是3,2.由根与系数的关系可知(2)(3),即k.(2)因为x0,f(x),当且仅当x时取等号.由已知f(x)t对任意x0恒成立,故t,即t的取值范围是.11.(1)解关于x的不等式x22mxm10;(2)解关于x的不等式ax2(2a1)x20.解(1)原不等式对应方程的判别式(2m)24(m1)4(m2m1).当m2m10,即m或m时,由于方程x22mxm10的两根是m,所以原不等式的解集是x|xm,或xm;当0,即m时,不等式的解集为x|xR,且xm;当0,即m时,不等式的解集为R.综上,当m或m时,不等式的解集为x|xm,或xm;当m时,不等式的解集为x|xR,且xm;当m时,不等式的解集为R.(2)原不等式可化为(ax1)(x2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国横鱼项目创业计划书
- 中国APM项目创业计划书
- 中国认证检验检测项目创业计划书
- 中国可见光人脸识别项目创业计划书
- 中国金针菇项目创业计划书
- 中国计算机工程项目创业计划书
- 中国光通信交换设备项目创业计划书
- 2025《混凝土搅拌站劳动合同》
- 中国电子体温计项目创业计划书
- 场景详尽电子商务代理协议书
- 2025年中国水性马克笔行业市场前景预测及投资价值评估分析报告
- 电动汽车充换电站建设资料标准
- 2025年网络安全与信息技术考试试题及答案
- 南邮综评面试题目及答案
- 江苏省常州市新北区外国语学校2025届英语七下期末考试试题含答案
- 2025届四川省宜宾市叙州区英语七下期末质量检测试题含答案
- T/CCOA 62-2023大豆油生产技术规范
- SQL基础语法的试题与答案
- 山东省潍坊市2025届(年)高三高考模拟考试物理试题及答案(潍坊三模)
- 23G409先张法预应力混凝土管桩
- 【MOOC】中国税法:案例·原理·方法-暨南大学 中国大学慕课MOOC答案
评论
0/150
提交评论