麻阳苗族自治县二中2018-2019学年上学期高二数学12月月考试题含解析_第1页
麻阳苗族自治县二中2018-2019学年上学期高二数学12月月考试题含解析_第2页
麻阳苗族自治县二中2018-2019学年上学期高二数学12月月考试题含解析_第3页
麻阳苗族自治县二中2018-2019学年上学期高二数学12月月考试题含解析_第4页
麻阳苗族自治县二中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷麻阳苗族自治县二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知数列为等差数列,为前项和,公差为,若,则的值为( )A B C D2 点P是棱长为1的正方体ABCDA1B1C1D1的底面A1B1C1D1上一点,则的取值范围是( )A1,B,C1,0D,03 已知ABC中,a=1,b=,B=45,则角A等于( )A150B90C60D304 已知曲线C1:y=ex上一点A(x1,y1),曲线C2:y=1+ln(xm)(m0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|e恒成立,则m的最小值为( )A1BCe1De+15 以的焦点为顶点,顶点为焦点的椭圆方程为( )ABCD 6 等比数列的前n项,前2n项,前3n项的和分别为A,B,C,则( )AB2=ACBA+C=2BCB(BA)=A(CA)DB(BA)=C(CA)7 Sn是等差数列an的前n项和,若3a82a74,则下列结论正确的是( )AS1872 BS1976CS2080 DS21848 为得到函数的图象,只需将函数y=sin2x的图象( )A向左平移个长度单位B向右平移个长度单位C向左平移个长度单位D向右平移个长度单位9 如图,在四棱锥PABCD中,PA平面ABCD,底面ABCD是菱形,AB=2,BAD=60()求证:BD平面PAC;()若PA=AB,求PB与AC所成角的余弦值;()当平面PBC与平面PDC垂直时,求PA的长【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离10设定义在R上的函数f(x)对任意实数x,y,满足f(x)+f(y)=f(x+y),且f(3)=4,则f(0)+f(3)的值为( )A2B4C0D411已知函数f(x)=x3+mx2+(2m+3)x(mR)存在两个极值点x1,x2,直线l经过点A(x1,x12),B(x2,x22),记圆(x+1)2+y2=上的点到直线l的最短距离为g(m),则g(m)的取值范围是( )A0,2B0,3C0,)D0,)12已知平面=l,m是内不同于l的直线,那么下列命题中错误 的是()A若m,则mlB若ml,则mC若m,则mlD若ml,则m二、填空题13已知线性回归方程=9,则b=14在中,有等式:;.其中恒成立的等式序号为_.15在ABC中,若a=9,b=10,c=12,则ABC的形状是 16已知函数y=f(x),xI,若存在x0I,使得f(x0)=x0,则称x0为函数y=f(x)的不动点;若存在x0I,使得f(f(x0)=x0,则称x0为函数y=f(x)的稳定点则下列结论中正确的是(填上所有正确结论的序号),1是函数g(x)=2x21有两个不动点;若x0为函数y=f(x)的不动点,则x0必为函数y=f(x)的稳定点;若x0为函数y=f(x)的稳定点,则x0必为函数y=f(x)的不动点;函数g(x)=2x21共有三个稳定点;若函数y=f(x)在定义域I上单调递增,则它的不动点与稳定点是完全相同17已知过球面上 三点的截面和球心的距离是球半径的一半,且,则球表面积是_.181785与840的最大约数为三、解答题19某同学用“五点法”画函数f(x)=Asin(x+)+B(A0,0,|)在某一个周期内的图象时,列表并填入的部分数据如表: xx1x2x3x+02Asin(x+)+B000()请求出表中的x1,x2,x3的值,并写出函数f(x)的解析式;()将f(x)的图象向右平移个单位得到函数g(x)的图象,若函数g(x)在区间0,m(3m4)上的图象的最高点和最低点分别为M,N,求向量与夹角的大小20已知函数f(x)=在(,f()处的切线方程为8x9y+t=0(mN,tR)(1)求m和t的值;(2)若关于x的不等式f(x)ax+在,+)恒成立,求实数a的取值范围21已知函数f(x)是定义在R上的奇函数,当x0时,.若,f(x-1)f(x),则实数a的取值范围为ABCD22已知f(x)=log3(1+x)log3(1x)(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x,时,不等式 f(x)g(x)有解,求k的取值范围23已知,其中e是自然常数,aR()讨论a=1时,函数f(x)的单调性、极值; ()求证:在()的条件下,f(x)g(x)+24在锐角三角形ABC中,内角A,B,C所对的边分别为a,b,c,且2csinA=a(1)求角C的大小;(2)若c=2,a2+b2=6,求ABC的面积麻阳苗族自治县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】试题分析:若为等差数列,则为等差数列公差为, ,故选B. 考点:1、等差数列的通项公式;2、等差数列的前项和公式.2 【答案】D【解析】解:如图所示:以点D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,以DD1所在的直线为z轴,建立空间直角坐标系则点A(1,0,0),C1 (0,1,1),设点P的坐标为(x,y,z),则由题意可得 0x1,0y1,z=1=(1x,y,1),=(x,1y,0),=x(1x)y(1y)+0=x2x+y2y=+,由二次函数的性质可得,当x=y=时,取得最小值为;故当x=0或1,且y=0或1时,取得最大值为0,则的取值范围是,0,故选D【点评】本题主要考查向量在几何中的应用,两个向量的数量积公式,两个向量坐标形式的运算,属于中档题3 【答案】D【解析】解:,B=45根据正弦定理可知 sinA=A=30故选D【点评】本题主要考查正弦定理的应用属基础题4 【答案】C【解析】解:当y1=y2时,对于任意x1,x2,都有|AB|e恒成立,可得: =1+ln(x2m),x2x1e,01+ln(x2m),lnxx1(x1),考虑x2m1时1+ln(x2m)x2m,令x2m,化为mxexe,xm+令f(x)=xexe,则f(x)=1exe,可得x=e时,f(x)取得最大值me1故选:C5 【答案】D【解析】解:双曲线的顶点为(0,2)和(0,2),焦点为(0,4)和(0,4)椭圆的焦点坐标是为(0,2)和(0,2),顶点为(0,4)和(0,4)椭圆方程为故选D【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质6 【答案】C【解析】解:若公比q=1,则B,C成立;故排除A,D;若公比q1,则A=Sn=,B=S2n=,C=S3n=,B(BA)=()=(1qn)(1qn)(1+qn)A(CA)=()=(1qn)(1qn)(1+qn);故B(BA)=A(CA);故选:C【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力7 【答案】【解析】选B.3a82a74,3(a17d)2(a16d)4,即a19d4,S1818a118(a1d)不恒为常数S1919a119(a19d)76,同理S20,S21均不恒为常数,故选B.8 【答案】A【解析】解:,只需将函数y=sin2x的图象向左平移个单位得到函数的图象故选A【点评】本题主要考查诱导公式和三角函数的平移属基础题9 【答案】 【解析】解:(I)证明:因为四边形ABCD是菱形,所以ACBD,又因为PA平面ABCD,所以PABD,PAAC=A所以BD平面PAC(II)设ACBD=O,因为BAD=60,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系Oxyz,则P(0,2),A(0,0),B(1,0,0),C(0,0)所以=(1,2),设PB与AC所成的角为,则cos=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC平面PDC,所以=0,即6+=0,解得t=,所以PA=【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力10【答案】B【解析】解:因为f(x)+f(y)=f(x+y),令x=y=0,则f(0)+f(0)=f(0+0)=f(0),所以,f(0)=0;再令y=x,则f(x)+f(x)=f(0)=0,所以,f(x)=f(x),所以,函数f(x)为奇函数又f(3)=4,所以,f(3)=f(3)=4,所以,f(0)+f(3)=4故选:B【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f(x)为奇函数是关键,考查推理与运算求解能力,属于中档题11【答案】C【解析】解:函数f(x)=x3+mx2+(2m+3)x的导数为f(x)=x2+2mx+2m+3,由题意可得,判别式0,即有4m24(2m+3)0,解得m3或m1,又x1+x2=2m,x1x2=2m+3,直线l经过点A(x1,x12),B(x2,x22),即有斜率k=x1+x2=2m,则有直线AB:yx12=2m(xx1),即为2mx+y2mx1x12=0,圆(x+1)2+y2=的圆心为(1,0),半径r为则g(m)=dr=,由于f(x1)=x12+2mx1+2m+3=0,则g(m)=,又m3或m1,即有m21则g(m)=,则有0g(m)故选C【点评】本题考查导数的运用:求极值,同时考查二次方程韦达定理的运用,直线方程的求法和点到直线的距离公式的运用,以及圆上的点到直线的距离的最值的求法,属于中档题12【答案】D【解析】【分析】由题设条件,平面=l,m是内不同于l的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;综上D选项中的命题是错误的故选D二、填空题13【答案】4 【解析】解:将代入线性回归方程可得9=1+2b,b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题14【答案】【解析】 试题分析:对于中,由正弦定理可知,推出或,所以三角形为等腰三角形或直角三角形,所以不正确;对于中,即恒成立,所以是正确的;对于中,可得,不满足一般三角形,所以不正确;对于中,由正弦定理以及合分比定理可知是正确,故选选1考点:正弦定理;三角恒等变换15【答案】锐角三角形【解析】解:c=12是最大边,角C是最大角根据余弦定理,得cosC=0C(0,),角C是锐角,由此可得A、B也是锐角,所以ABC是锐角三角形故答案为:锐角三角形【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题16【答案】 【解析】解:对于,令g(x)=x,可得x=或x=1,故正确;对于,因为f(x0)=x0,所以f(f(x0)=f(x0)=x0,即f(f(x0)=x0,故x0也是函数y=f(x)的稳定点,故正确;对于,g(x)=2x21,令2(2x21)21=x,因为不动点必为稳定点,所以该方程一定有两解x=,1,由此因式分解,可得(x1)(2x+1)(4x2+2x1)=0还有另外两解,故函数g(x)的稳定点有,1,其中是稳定点,但不是不动点,故错误;对于,若函数y=f(x)有不动点x0,显然它也有稳定点x0;若函数y=f(x)有稳定点x0,即f(f(x0)=x0,设f(x0)=y0,则f(y0)=x0即(x0,y0)和(y0,x0)都在函数y=f(x)的图象上,假设x0y0,因为y=f(x)是增函数,则f(x0)f(y0),即y0x0,与假设矛盾;假设x0y0,因为y=f(x)是增函数,则f(x0)f(y0),即y0x0,与假设矛盾;故x0=y0,即f(x0)=x0,y=f(x)有不动点x0,故正确故答案为:【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力17【答案】【解析】111考点:球的体积和表面积.【方法点晴】本题主要考查了球的表面积和体积的问题,其中解答中涉及到截面圆圆心与球心的连线垂直于截面,球的性质、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记球的截面圆圆心的性质,求出球的半径是解答的关键.18【答案】105 【解析】解:1785=8402+105,840=1058+0840与1785的最大公约数是105故答案为105三、解答题19【答案】 【解析】解:()由条件知,()函数f(x)的图象向右平移个单位得到函数g(x)的图象,函数g(x)在区间0,m(m(3,4)上的图象的最高点和最低点分别为M,N,最高点为,最低点为,又0,【点评】本题主要考查了由y=Asin(x+)的部分图象确定其解析式,函数y=Asin(x+)的图象变换,向量夹角公式的应用,属于基本知识的考查20【答案】 【解析】解:(1)函数f(x)的导数为f(x)=,由题意可得,f()=,f()=,即=,且=,由mN,则m=1,t=8;(2)设h(x)=ax+,xh()=0,即a,h(x)=a,当a时,若x,h(x)0,若x,设g(x)=a,g(x)=0,g(x)在,上递减,且g()0,则g(x)0,即h(x)0在,上恒成立由可得,a时,h(x)0,h(x)在,+)上递增,h(x)h()=0,则当a时,不等式f(x)ax+在,+)恒成立;当a时,h()0,不合题意综上可得a【点评】本题考查导数的运用:求切线方程和求单调区间,主要考查不等式恒成立问题转化为求函数最值,正确求导和分类讨论是解题的关键21【答案】B【解析】当x0时,f(x)=,由f(x)=x3a2,x2a2,得f(x)a2;当a2x2a2时,f(x)=a2;由f(x)=x,0xa2,得f(x)a2。当x0时,。函数f(x)为奇函数,当x0时,。对xR,都有f(x1)f(x),2a2(4a2)1,解得:。故实数a的取值范围是。22【答案】 【解析】解:(1)f(x)=log3(1+x)log3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论