高州市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
高州市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
高州市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
高州市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
高州市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高州市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 给出下列两个结论:若命题p:x0R,x02+x0+10,则p:xR,x2+x+10;命题“若m0,则方程x2+xm=0有实数根”的逆否命题为:“若方程x2+xm=0没有实数根,则m0”;则判断正确的是( )A对错B错对C都对D都错2 已知,其中是虚数单位,则的虚部为( )A B C D【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.3 圆锥的高扩大到原来的 倍,底面半径缩短到原来的,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的4 函数y=Asin(x+)(0,|,xR)的部分图象如图所示,则函数表达式( )Ay=4sin(x)By=4sin(x)Cy=4sin(x+)Dy=4sin(x+)5 某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为( )2A B C D【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.6 已知定义在R上的函数f(x)满足f(x)=,且f(x)=f(x+2),g(x)=,则方程g(x)=f(x)g(x)在区间3,7上的所有零点之和为( )A12B11C10D97 已知两条直线ax+y2=0和3x+(a+2)y+1=0互相平行,则实数a等于( )A1或3B1或3C1或3D1或38 设x,yR,且满足,则x+y=( )A1B2C3D49 如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则几何体的体积为( )A. B. C. 1 D. 【命题意图】本题考查空间几何体的三视图,几何体的体积等基础知识,意在考查学生空间想象能力和计算能力10若函数的定义域是,则函数的定义域是( )A B C D11将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是( )Ax=BCD12设D、E、F分别是ABC的三边BC、CA、AB上的点,且=2, =2, =2,则与( )A互相垂直B同向平行C反向平行D既不平行也不垂直二、填空题13一船以每小时12海里的速度向东航行,在A处看到一个灯塔B在北偏东60,行驶4小时后,到达C处,看到这个灯塔B在北偏东15,这时船与灯塔相距为海里14无论m为何值时,直线(2m+1)x+(m+1)y7m4=0恒过定点15阅读如图所示的程序框图,运行相应的程序,若输入的X的值为2,则输出的结果是16在ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1若C=,则=17设f(x)是(x2+)6展开式的中间项,若f(x)mx在区间,上恒成立,则实数m的取值范围是18抛物线的准线与双曲线的两条渐近线所围成的三角形面积为_三、解答题19已知数列an的首项为1,前n项和Sn满足=+1(n2)()求Sn与数列an的通项公式;()设bn=(nN*),求使不等式b1+b2+bn成立的最小正整数n20(本题12分)已知数列的首项,通项(,为常数),且成等差数列,求:(1)的值;(2)数列前项和的公式.21我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,40:59岁之间进行了统计,相关数据如下:100500元6001000总计2039106164059151934总计252550(1)用分层抽样的方法在缴费100:500元之间的村民中随机抽取5人,则年龄在20:39岁之间应抽取几人?(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率22在直角坐标系xOy中,曲线C1的参数方程为C1:为参数),曲线C2: =1()在以O为极点,x轴的正半轴为极轴的极坐标系中,求C1,C2的极坐标方程;()射线=(0)与C1的异于极点的交点为A,与C2的交点为B,求|AB| 23已知函数f(x)=sin2xsin+cos2xcos+sin()(0),其图象过点(,)()求函数f(x)在0,上的单调递减区间;()若x0(,),sinx0=,求f(x0)的值24已知函数f(x)=ax2+bx+c,满足f(1)=,且3a2c2b(1)求证:a0时,的取值范围;(2)证明函数f(x)在区间(0,2)内至少有一个零点;(3)设x1,x2是函数f(x)的两个零点,求|x1x2|的取值范围 高州市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:命题p是一个特称命题,它的否定是全称命题,p是全称命题,所以正确根据逆否命题的定义可知正确故选C【点评】考查特称命题,全称命题,和逆否命题的概念2 【答案】B【解析】由复数的除法运算法则得,所以的虚部为.3 【答案】A【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为,将圆锥的高扩大到原来的倍,底面半径缩短到原来的,则体积为,所以,故选A.考点:圆锥的体积公式.14 【答案】 D【解析】解:由函数的解析式可得A=4, =6+2,可得=再根据sin(2)+=0,可得(2)+=k,kz,再结合|,=,y=4sin(x+),故选:D【点评】本题主要考查由函数y=Asin(x+)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出,由特殊点的坐标求出的值,属于基础题5 【答案】6 【答案】B【解析】解:f(x)=f(x+2),函数f(x)为周期为2的周期函数,函数g(x)=,其图象关于点(2,3)对称,如图,函数f(x)的图象也关于点(2,3)对称,函数f(x)与g(x)在3,7上的交点也关于(2,3)对称,设A,B,C,D的横坐标分别为a,b,c,d,则a+d=4,b+c=4,由图象知另一交点横坐标为3,故两图象在3,7上的交点的横坐标之和为4+4+3=11,即函数y=f(x)g(x)在3,7上的所有零点之和为11故选:B【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法属于中档题7 【答案】A【解析】解:两条直线ax+y2=0和3x+(a+2)y+1=0互相平行,所以=,解得 a=3,或a=1故选:A8 【答案】D【解析】解:(x2)3+2x+sin(x2)=2,(x2)3+2(x2)+sin(x2)=24=2,(y2)3+2y+sin(y2)=6,(y2)3+2(y2)+sin(y2)=64=2,设f(t)=t3+2t+sint,则f(t)为奇函数,且f(t)=3t2+2+cost0,即函数f(t)单调递增由题意可知f(x2)=2,f(y2)=2,即f(x2)+f(y2)=22=0,即f(x2)=f(y2)=f(2y),函数f(t)单调递增x2=2y,即x+y=4,故选:D【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f(t)是解决本题的关键,综合考查了函数的性质9 【答案】D【解析】10【答案】B 【解析】11【答案】B【解析】解:将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx,再向右平移个单位得到y=cos(x),由(x)=k,得x=2k,即+2k,kZ,当k=0时,即函数的一条对称轴为,故选:B【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键12【答案】D【解析】解:如图所示,ABC中, =2, =2, =2,根据定比分点的向量式,得=+,=+, =+,以上三式相加,得+=,所以,与反向共线【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目二、填空题13【答案】24 【解析】解:根据题意,可得出B=7530=45,在ABC中,根据正弦定理得:BC=24海里,则这时船与灯塔的距离为24海里故答案为:2414【答案】(3,1) 【解析】解:由(2m+1)x+(m+1)y7m4=0,得即(2x+y7)m+(x+y4)=0,2x+y7=0,且x+y4=0,一次函数(2m+1)x+(m+1)y7m4=0的图象就和m无关,恒过一定点 由,解得解之得:x=3 y=1 所以过定点(3,1);故答案为:(3,1)15【答案】3 【解析】解:分析如图执行框图,可知:该程序的作用是计算分段函数f(x)=的函数值当x=2时,f(x)=122=3故答案为:3【点评】本题主要考查了选择结构、流程图等基础知识,算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视16【答案】= 【解析】解:在ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1,sinAsinB+sinBsinC=2sin2B再由正弦定理可得 ab+bc=2b2,即 a+c=2b,故a,b,c成等差数列C=,由a,b,c成等差数列可得c=2ba,由余弦定理可得 (2ba)2=a2+b22abcosC=a2+b2+ab化简可得 5ab=3b2, =故答案为:【点评】本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题17【答案】5,+)【解析】二项式定理【专题】概率与统计;二项式定理【分析】由题意可得 f(x)=x3,再由条件可得mx2 在区间,上恒成立,求得x2在区间,上的最大值,可得m的范围【解答】解:由题意可得 f(x)=x6=x3由f(x)mx在区间,上恒成立,可得mx2 在区间,上恒成立,由于x2在区间,上的最大值为 5,故m5,即m的范围为5,+),故答案为:5,+)【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题18【答案】【解析】【知识点】抛物线双曲线【试题解析】抛物线的准线方程为:x=2;双曲线的两条渐近线方程为:所以故答案为:三、解答题19【答案】 【解析】解:()因为=+1(n2),所以是首项为1,公差为1的等差数列,则=1+(n1)1=n,从而Sn=n2当n=1时,a1=S1=1,当n1时,an=SnSn1=n2(n1)2=2n1因为a1=1也符合上式,所以an=2n1()由()知bn=,所以b1+b2+bn=,由,解得n12所以使不等式成立的最小正整数为13【点评】本小题主要考查数列、不等式等基础知识,考查运算求解能力,考查化归与转化思想20【答案】(1);(2).考点:等差,等比数列通项公式,数列求和.21【答案】 【解析】解:(1)设抽取x人,则,解得x=2,即年龄在20:39岁之间应抽取2人(2)设在缴费100:500元之间抽取的5人中,年龄在20:39岁年龄的两人为A,B,在40:59岁之间为a,b,c,随机选取2人的情况有(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c),共10种,年龄都在40:59岁之间的有(a,b),(a,c),(b,c),共3种,则对应的概率P=【点评】本题主要考查分层抽样的应用,以及古典概型的计算,利用列举法是解决本题的关键22【答案】 【解析】解:()曲线为参数)可化为普通方程:(x1)2+y2=1,由可得曲线C1的极坐标方程为=2cos,曲线C2的极坐标方程为2(1+sin2)=2()射线与曲线C1的交点A的极径为,射线与曲线C2的交点B的极径满足,解得,所以 23【答案】 【解析】(本小题满分12分)解:()f(x)=+=+=)由f(x)图象过点()知:所以:=所以f(x)=令(kZ)即:所以:函数f(x)在0,上的单调区间为:()因为x0(,2),则:2x0(,2)则: =sin所以=)=【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数单调区间的确定,三角函数的求值问题,属于基础题型24【答案】【解析】解:(1)f(1)=a+b+c=,3a+2b+2c=0又3a2c2b,故3a0,2b0,从而a0,b0,又2c=3a2b及3a2c2b知3a3a2b2ba0,332,即3(2)根据题意有f(0)=0,f(2)=4a+2b+c=(3a+2b+2c)+ac=ac下面对c的正负情况进行讨论:当c0时,a0,f(0)=c0,f(1)=0所以函数f(x)在区间(0,1)内至少有一个零点;当c0时,a0,f(1)=0,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论