




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷海勃湾区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 若双曲线C:x2=1(b0)的顶点到渐近线的距离为,则双曲线的离心率e=( )A2BC3D2 下列说法正确的是( )A类比推理是由特殊到一般的推理B演绎推理是特殊到一般的推理C归纳推理是个别到一般的推理D合情推理可以作为证明的步骤3 对一切实数x,不等式x2+a|x|+10恒成立,则实数a的取值范围是( )A(,2)BD上是减函数,那么b+c( )A有最大值B有最大值C有最小值D有最小值4 数列1,4,7,10,13,的通项公式an为( )A2n1B3n+2C(1)n+1(3n2)D(1)n+13n25 下列命题中错误的是( )A圆柱的轴截面是过母线的截面中面积最大的一个B圆锥的轴截面是所在过顶点的截面中面积最大的一个C圆台的所有平行于底面的截面都是圆面D圆锥所有的轴截面是全等的等腰三角形6 已知抛物线:的焦点为,是抛物线的准线上的一点,且的纵坐标为正数,是直线与抛物线的一个交点,若,则直线的方程为( )A B C D7 设函数f(x)是奇函数f(x)(xR)的导函数,f(2)=0,当x0时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是( )A(,2)(0,2)B(,2)(2,+)C(2,0)(2,+)D(2,0)(0,2)8 四棱锥PABCD的底面是一个正方形,PA平面ABCD,PA=AB=2,E是棱PA的中点,则异面直线BE与AC所成角的余弦值是( )ABCD9 设x,yR,且满足,则x+y=( )A1B2C3D410设f(x)与g(x)是定义在同一区间a,b上的两个函数,若函数y=f(x)g(x)在xa,b上有两个不同的零点,则称f(x)和g(x)在a,b上是“关联函数”,区间a,b称为“关联区间”若f(x)=x23x+4与g(x)=2x+m在0,3上是“关联函数”,则m的取值范围为( )A(,2B1,0C(,2D(,+)11设D为ABC所在平面内一点,则( )ABCD12数列1,3,6,10,的一个通项公式是( )A B C D二、填空题13若等比数列an的前n项和为Sn,且,则=14已知圆的方程为,过点的直线与圆交于两点,若使最小则直线的方程是 15【南通中学2018届高三10月月考】已知函数,若曲线在点处的切线经过圆的圆心,则实数的值为_16设幂函数的图象经过点,则= 17(本小题满分12分)点M(2pt,2pt2)(t为常数,且t0)是拋物线C:x22py(p0)上一点,过M作倾斜角互补的两直线l1与l2与C的另外交点分别为P、Q.(1)求证:直线PQ的斜率为2t;(2)记拋物线的准线与y轴的交点为T,若拋物线在M处的切线过点T,求t的值18设p:f(x)=ex+lnx+2x2+mx+1在(0,+)上单调递增,q:m5,则p是q的条件三、解答题19在极坐标系中,圆C的极坐标方程为:2=4(cos+sin)6若以极点O为原点,极轴所在直线为x轴建立平面直角坐标系()求圆C的参数方程;()在直角坐标系中,点P(x,y)是圆C上动点,试求x+y的最大值,并求出此时点P的直角坐标 20如图,过抛物线C:x2=2py(p0)的焦点F的直线交C于M(x1,y1),N(x2,y2)两点,且x1x2=4()p的值;()R,Q是C上的两动点,R,Q的纵坐标之和为1,RQ的垂直平分线交y轴于点T,求MNT的面积的最小值21如图,M、N是焦点为F的抛物线y2=2px(p0)上两个不同的点,且线段MN中点A的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围22已知函数f(x)=cos(x+),(0,0),其中xR且图象相邻两对称轴之间的距离为;(1)求f(x)的对称轴方程和单调递增区间;(2)求f(x)的最大值、最小值,并指出f(x)取得最大值、最小值时所对应的x的集合23求函数f(x)=4x+4在0,3上的最大值与最小值24某单位为了了解用电量y度与气温x之间的关系,随机统计了某4天的用电量与当天气温气温()141286用电量(度)22263438(1)求线性回归方程;()(2)根据(1)的回归方程估计当气温为10时的用电量附:回归直线的斜率和截距的最小二乘法估计公式分别为: =, =海勃湾区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:双曲线C:x2=1(b0)的顶点为(1,0),渐近线方程为y=bx,由题意可得=,解得b=1,c=,即有离心率e=故选:B【点评】本题考查双曲线的离心率的求法,注意运用点到直线的距离公式,考查运算能力,属于基础题2 【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题3 【答案】B【解析】解:由f(x)在上是减函数,知f(x)=3x2+2bx+c0,x,则15+2b+2c0b+c故选B4 【答案】C【解析】解:通过观察前几项可以发现:数列中符号是正负交替,每一项的符号为(1)n+1,绝对值为3n2,故通项公式an=(1)n+1(3n2)故选:C5 【答案】 B【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah2rh当a=2r时截面面积最大,即轴截面面积最大,故A正确对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为,截面三角形SAB的高为,截面面积S=故截面的最大面积为故B错误对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确故选:B【点评】本题考查了旋转体的结构特征,属于中档题6 【答案】B【解析】 考点:抛物线的定义及性质【易错点睛】抛物线问题的三个注意事项:(1)求抛物线的标准方程时一般要用待定系数法求p的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程(2)注意应用抛物线定义中的距离相等的转化来解决问题(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点7 【答案】A【解析】解:设g(x)=,则g(x)的导数为:g(x)=,当x0时总有xf(x)f(x)0成立,即当x0时,g(x)0,当x0时,函数g(x)为减函数,又g(x)=g(x),函数g(x)为定义域上的偶函数,x0时,函数g(x)是增函数,又g(2)=0=g(2),x0时,由f(x)0,得:g(x)g(2),解得:0x2,x0时,由f(x)0,得:g(x)g(2),解得:x2,f(x)0成立的x的取值范围是:(,2)(0,2)故选:A8 【答案】B【解析】解:以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则B(2,0,0),E(0,0,1),A(0,0,0),C(2,2,0),=(2,0,1),=(2,2,0),设异面直线BE与AC所成角为,则cos=故选:B9 【答案】D【解析】解:(x2)3+2x+sin(x2)=2,(x2)3+2(x2)+sin(x2)=24=2,(y2)3+2y+sin(y2)=6,(y2)3+2(y2)+sin(y2)=64=2,设f(t)=t3+2t+sint,则f(t)为奇函数,且f(t)=3t2+2+cost0,即函数f(t)单调递增由题意可知f(x2)=2,f(y2)=2,即f(x2)+f(y2)=22=0,即f(x2)=f(y2)=f(2y),函数f(t)单调递增x2=2y,即x+y=4,故选:D【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f(t)是解决本题的关键,综合考查了函数的性质10【答案】A【解析】解:f(x)=x23x+4与g(x)=2x+m在0,3上是“关联函数”,故函数y=h(x)=f(x)g(x)=x25x+4m在0,3上有两个不同的零点,故有,即,解得m2,故选A【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题11【答案】A【解析】解:由已知得到如图由=;故选:A【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为12【答案】C【解析】试题分析:可采用排除法,令和,验证选项,只有,使得,故选C考点:数列的通项公式二、填空题13【答案】 【解析】解:等比数列an的前n项和为Sn,且,S4=5S2,又S2,S4S2,S6S4成等比数列,(S4S2)2=S2(S6S4),(5S2S2)2=S2(S65S2),解得S6=21S2,=故答案为:【点评】本题考查等比数列的求和公式和等比数列的性质,用S2表示S4和S6是解决问题的关键,属中档题14【答案】【解析】试题分析:由圆的方程为,表示圆心在,半径为的圆,点到圆心的距离等于,小于圆的半径,所以点在圆内,所以当时,最小,此时,由点斜式方程可得,直线的方程为,即.考点:直线与圆的位置关系的应用.15【答案】【解析】结合函数的解析式可得:,对函数求导可得:,故切线的斜率为,则切线方程为:,即,圆:的圆心为,则:.16【答案】【解析】试题分析:由题意得考点:幂函数定义17【答案】【解析】解:(1)证明:l1的斜率显然存在,设为k,其方程为y2pt2k(x2pt)将与拋物线x22py联立得,x22pkx4p2t(kt)0,解得x12pt,x22p(kt),将x22p(kt)代入x22py得y22p(kt)2,P点的坐标为(2p(kt),2p(kt)2)由于l1与l2的倾斜角互补,点Q的坐标为(2p(kt),2p(kt)2),kPQ2t,即直线PQ的斜率为2t.(2)由y得y,拋物线C在M(2pt,2pt2)处的切线斜率为k2t.其切线方程为y2pt22t(x2pt),又C的准线与y轴的交点T的坐标为(0,)2pt22t(2pt)解得t,即t的值为.18【答案】必要不充分 【解析】解:由题意得f(x)=ex+4x+m,f(x)=ex+lnx+2x2+mx+1在(0,+)内单调递增,f(x)0,即ex+4x+m0在定义域内恒成立,由于+4x4,当且仅当=4x,即x=时等号成立,故对任意的x(0,+),必有ex+4x5mex4x不能得出m5但当m5时,必有ex+4x+m0成立,即f(x)0在x(0,+)上成立p不是q的充分条件,p是q的必要条件,即p是q的必要不充分条件故答案为:必要不充分三、解答题19【答案】 【解析】(本小题满分10分)选修44:坐标系与参数方程解:()因为2=4(cos+sin)6,所以x2+y2=4x+4y6,所以x2+y24x4y+6=0,即(x2)2+(y2)2=2为圆C的普通方程所以所求的圆C的参数方程为(为参数)()由()可得,当时,即点P的直角坐标为(3,3)时,x+y取到最大值为6 20【答案】 【解析】解:()由题意设MN:y=kx+,由,消去y得,x22pkxp2=0(*)由题设,x1,x2是方程(*)的两实根,故p=2;()设R(x3,y3),Q(x4,y4),T(0,t),T在RQ的垂直平分线上,|TR|=|TQ|得,又,即4(y3y4)=(y3+y42t)(y4y3)而y3y4,4=y3+y42t又y3+y4=1,故T(0,)因此,由()得,x1+x2=4k,x1x2=4,=因此,当k=0时,SMNT有最小值3【点评】本题考查抛物线方程的求法,考查了直线和圆锥曲线间的关系,着重考查“舍而不求”的解题思想方法,考查了计算能力,是中档题21【答案】 【解析】解:(1)设M(x1,y1),N(x2,y2),则x1+x2=8p,|MF|=x1+,|NF|=x2+,|MF|+|NF|=x1+x2+p=8;(2)p=2时,y2=4x,若直线MN斜率不存在,则B(3,0);若直线MN斜率存在,设A(3,t)(t0),M(x1,y1),N(x2,y2),则代入利用点差法,可得y12y22=4(x1x2)kMN=,直线MN的方程为yt=(x3),B的横坐标为x=3,直线MN代入y2=4x,可得y22ty+2t212=00可得0t212,x=3(3,3),点B横坐标的取值范围是(3,3)【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题22【答案】 【解析】解:(1)函数f(x)=cos(x+)的图象的两对称轴之间的距离为=,=2,f(x)=cos(2x+)令2x+=k,求得x=,可得对称轴方程为 x=,kZ令2k2x+2k,求得 kxk,可得函数的增区间为,kZ(2)当2x+=2k,即x=k,kZ时,f(x)取得最大值为1当2x+=2k+,即x=k+,kZ时,f(x)取得最小值为1f(x)取最大值时相应的x集合为x|x=k,kZ;f(x)取最小值时相应
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 双十一营销美容院活动
- 银行元旦活动方案
- 永州宁远县招聘教师笔试真题2024
- 2025年缝纫工理论试题
- 跨平台性能一致性分析-洞察阐释
- 新医科框架下的遗传学教学目标和核心能力建设
- 中职院校智慧校园建设路径与实践
- 推动种业振兴的策略及实施路径
- 2025至2030年中国球墨铸铁电信井盖行业投资前景及策略咨询报告
- 2025至2030年中国牛仔中裤行业投资前景及策略咨询报告
- 哈尔滨市第九中学校2024-2025学年高二下学期期中地理试卷
- 淮安监理员试题及答案
- 机电工程2025年技术经济学试题及答案
- 2025年粮食仓储行业调研分析报告
- 2025年“巴渝工匠”杯职业技能竞赛(调饮师赛项)备赛试题库(含答案)
- 2025辽宁沈阳副食集团所属企业招聘25人笔试参考题库附带答案详解
- 2024-2025新入员工安全培训考试试题及参考答案(达标题)
- 2025陕西中考:历史必背知识点
- 《电力设施保护》课件
- 《人工智能应用基础》 完整课件(共十个模块-上)
- 国企财务测试题及答案
评论
0/150
提交评论