汇川区高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
汇川区高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
汇川区高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
汇川区高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
汇川区高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

汇川区高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设i是虚数单位,是复数z的共轭复数,若z=2(+i),则z=( )A1iB1+iC1+iD1i2 双曲线4x2+ty24t=0的虚轴长等于( )AB2tCD43 设是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A1 B2 C4 D64 已知PD矩形ABCD所在的平面,图中相互垂直的平面有( )A2对B3对C4对D5对5 如果点在平面区域上,点在曲线上,那么的最小值为( )A B C. D6 已知双曲线:(,),以双曲线的一个顶点为圆心,为半径的圆被双曲线截得劣弧长为,则双曲线的离心率为( )A B C D7 复数是虚数单位)的虚部为( )A B C D【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力8 在等差数列an中,a1=2,a3+a5=8,则a7=( )A3B6C7D89 已知曲线C1:y=ex上一点A(x1,y1),曲线C2:y=1+ln(xm)(m0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|e恒成立,则m的最小值为( )A1BCe1De+110已知圆C:x2+y2=4,若点P(x0,y0)在圆C外,则直线l:x0x+y0y=4与圆C的位置关系为( )A相离B相切C相交D不能确定11某公园有P,Q,R三只小船,P船最多可乘3人,Q船最多可乘2人,R船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( )A36种B18种C27种D24种12定义新运算:当ab时,ab=a;当ab时,ab=b2,则函数f(x)=(1x)x(2x),x2,2的最大值等于( )A1B1C6D12二、填空题13【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=,对任意的m2,2,f(mx2)+f(x)0恒成立,则x的取值范围为_14复数z=(i虚数单位)在复平面上对应的点到原点的距离为15用描述法表示图中阴影部分的点(含边界)的坐标的集合为16(若集合A2,3,7,且A中至多有1个奇数,则这样的集合共有个17已知椭圆中心在原点,一个焦点为F(2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是18定积分sintcostdt=三、解答题19如图,在五面体ABCDEF中,四边形ABCD是边长为4的正方形,EFAD,平面ADEF平面ABCD,且BC=2EF,AE=AF,点G是EF的中点()证明:AG平面ABCD;()若直线BF与平面ACE所成角的正弦值为,求AG的长20(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)(不等式选做题)设,且,则的最小值为(几何证明选做题)如图,中,以为直径的半圆分别交于点,若,则21已知ab0,求证:22已知数列an是各项均为正数的等比数列,满足a3=8,a3a22a1=0()求数列an的通项公式()记bn=log2an,求数列anbn的前n项和Sn23如图所示,两个全等的矩形和所在平面相交于,且,求证:平面24在三棱锥SABC中,SA平面ABC,ABAC()求证:ABSC;()设D,F分别是AC,SA的中点,点G是ABD的重心,求证:FG平面SBC;()若SA=AB=2,AC=4,求二面角AFDG的余弦值汇川区高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:设z=a+bi(a,bR),则=abi,由z=2(+i),得(a+bi)(abi)=2a+(b1)i,整理得a2+b2=2a+2(b1)i则,解得所以z=1+i故选B【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题2 【答案】C【解析】解:双曲线4x2+ty24t=0可化为:双曲线4x2+ty24t=0的虚轴长等于故选C3 【答案】B【解析】试题分析:设的前三项为,则由等差数列的性质,可得,所以,解得,由题意得,解得或,因为是递增的等差数列,所以,故选B考点:等差数列的性质4 【答案】D【解析】解:PD矩形ABCD所在的平面且PD面PDA,PD面PDC,面PDA面ABCD,面PDC面ABCD,又四边形ABCD为矩形BCCD,CDADPD矩形ABCD所在的平面PDBC,PDCDPDAD=D,PDCD=DCD面PAD,BC面PDC,AB面PAD,CD面PDC,BC面PBC,AB面PAB,面PDC面PAD,面PBC面PCD,面PAB面PAD综上相互垂直的平面有5对故答案选D5 【答案】A【解析】试题分析:根据约束条件画出可行域表示圆上的点到可行域的距离,当在点处时,求出圆心到可行域的距离内的点的最小距离,当在点处最小, 最小值为,因此,本题正确答案是.考点:线性规划求最值.6 【答案】B 考点:双曲线的性质7 【答案】A【解析】,所以虚部为-1,故选A.8 【答案】B【解析】解:在等差数列an中a1=2,a3+a5=8,2a4=a3+a5=8,解得a4=4,公差d=,a7=a1+6d=2+4=6故选:B9 【答案】C【解析】解:当y1=y2时,对于任意x1,x2,都有|AB|e恒成立,可得: =1+ln(x2m),x2x1e,01+ln(x2m),lnxx1(x1),考虑x2m1时1+ln(x2m)x2m,令x2m,化为mxexe,xm+令f(x)=xexe,则f(x)=1exe,可得x=e时,f(x)取得最大值me1故选:C10【答案】C【解析】解:由点P(x0,y0)在圆C:x2+y2=4外,可得x02+y02 4,求得圆心C(0,0)到直线l:x0x+y0y=4的距离d=2,故直线和圆C相交,故选:C【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题11【答案】 C【解析】排列、组合及简单计数问题【专题】计算题;分类讨论【分析】根据题意,分4种情况讨论,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,P船乘1个大人和2个小孩共3人,Q船乘2个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案【解答】解:分4种情况讨论,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,有A33=6种情况,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,有A33A22=12种情况,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,有C322=6种情况,P船乘1个大人和2个小孩共3人,Q船乘2个大人,有C31=3种情况,则共有6+12+6+3=27种乘船方法,故选C【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式12【答案】C【解析】解:由题意知当2x1时,f(x)=x2,当1x2时,f(x)=x32,又f(x)=x2,f(x)=x32在定义域上都为增函数,f(x)的最大值为f(2)=232=6故选C二、填空题13【答案】【解析】14【答案】 【解析】解:复数z=i(1+i)=1i,复数z=(i虚数单位)在复平面上对应的点(1,1)到原点的距离为:故答案为:【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力15【答案】(x,y)|xy0,且1x2,y1 【解析】解:图中的阴影部分的点设为(x,y)则x,y)|1x0,y0或0x2,0y1=(x,y)|xy0且1x2,y1故答案为:(x,y)|xy0,且1x2,y116【答案】6 【解析】解:集合A为2,3,7的真子集有7个,奇数3、7都包含的有3,7,则符合条件的有71=6个故答案为:6【点评】本题考查集合的子集问题,属基础知识的考查17【答案】 【解析】解:已知为所求;故答案为:【点评】本题主要考查椭圆的标准方程属基础题18【答案】 【解析】解: 0sintcostdt=0sin2td(2t)=(cos2t)|=(1+1)=故答案为:三、解答题19【答案】 【解析】(本小题满分12分)()证明:因为AE=AF,点G是EF的中点,所以AGEF又因为EFAD,所以AGAD因为平面ADEF平面ABCD,平面ADEF平面ABCD=AD,AG平面ADEF,所以AG平面ABCD()解:因为AG平面ABCD,ABAD,所以AG、AD、AB两两垂直以A为原点,以AB,AD,AG分别为x轴、y轴和z轴,如图建立空间直角坐标系则A(0,0,0),B(4,0,0),C(4,4,0),设AG=t(t0),则E(0,1,t),F(0,1,t),所以=(4,1,t),=(4,4,0),=(0,1,t)设平面ACE的法向量为=(x,y,z),由=0, =0,得,令z=1,得=(t,t,1)因为BF与平面ACE所成角的正弦值为,所以|cos|=,即=,解得t2=1或所以AG=1或AG=【点评】本题考查线面垂直的证明,考查满足条件的线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用20【答案】【解析】AB21【答案】 【解析】解:又=ab0,所以上式大于1,故成立,同理可证22【答案】 【解析】解:()设数列an的公比为q,由an0可得q0,且a3a22a1=0,化简得q2q2=0,解得q=2或q=1(舍),a3=a1q2=4a1=8,a1=2,数列an是以首项和公比均为2的等比数列,an=2n;()由(I)知bn=log2an=n,anbn=n2n,Sn=121+222+323+(n1)2n1+n2n,2Sn=122+223+(n2)2n1+(n1)2n+n2n+1,两式相减,得Sn=21+22+23+2n1+2nn2n+1,Sn=n2n+1,Sn=2+(n1)2n+1【点评】本题考查等比数列的通项公式,错位相减法求和等基础知识,考查推理论证能力、运算求解能力、数据处理能力,考查函数与方程思想、化归与转化思想,注意解题方法的积累,属于中档题23【答案】证明见解析【解析】 考点:直线与平面平行的判定与证明24【答案】 【解析】()证明:SA平面ABC,AB平面ABC,SAAB,又ABAC,SAAC=A,AB平面SAC,又AS平面SAC,ABSC()证明:取BD中点H,AB中点M,连结AH,DM,GF,FM,D,F分别是AC,SA的中点,点G是ABD的重心,AH过点G,DM过点G,且AG=2GH,由三角形中位线定理得FDSC,FMSB,FMFD=F,平面FMD平面SBC,FG平面FMD,FG平面SBC()解:以A为原点,AB为x轴,AC为y轴,AS为z轴,建立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论