




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
考生在复习数学运算的过程中,要重点掌握数学运算的常用解题方法。这些方法不仅能够帮助考生快速找到思路、简化解题过程、优化计算步骤,而且有几种方法经常用到并适用于大多数题型。接下来国家公务员考试网()就为大家介绍几种常用解题方法。1.方程法方程法是指将题目中未知的数用变量(如x,y)表示,根据题目中所含的等量关系,列出含有未知数的等式(组),通过求解未知数的数值,来解应用题的方法。因其为正向思维,思路简单,故不需要复杂的分析过程。方程法应用较为广泛,公务员考试数学运算绝大部分题目,如行程问题、工程问题、盈亏问题、和差倍比问题、浓度问题、利润问题、年龄问题等均可以通过方程法来求解。主要步骤:设未知量-找等量关系-列方程(组)-解方程(组)。2.特殊值法特殊值法,就是在题目所给的范围内取一个恰当的特殊值直接代入,将复杂的问题简单化的方法。特殊值法必须选取满足题干的特殊数、特殊点、特殊函数、特殊数列或特殊图形代替一般的情况,并由此计算出结果,从而快速解题。在公务员考试中,特殊值法常应用于和差倍比问题、行程问题、工程问题、浓度问题、利润问题、几何问题等。其中,在工程问题、浓度问题相关的比例问题时,一般将特殊值设为1;在涉及多个比例的问题时,有时为了将数值整数化,可以设特殊值为总量的最小公倍数。在运用特殊值法时,专家提醒考生要注意:确定这个特殊值不影响所求结果;数据应便于快速、准确计算,可尽量使计算结果为整数;结合其他方法灵活使用。3.代入排除法代入排除法就是从选项入手,代入某个选项后,如果不符合已知条件,或者推出矛盾,则可排除此选项的方法。代入排除法包括直接代入排除和选择性代入排除两种。其中,直接代入,就是把选项一个一个代入验证,直至得到符合题意的选项为止;选择性代入,是根据数的特性(奇偶性、整除特性、尾数特性、余数特性等)先筛选,再代入排除的方法。代入排除法广泛运用于多位数问题、不定方程问题、剩余问题、年龄问题、复杂行程问题、和差倍比问题等等。4.十字交叉法十字交叉法是利用“交叉十字”来求两个部分混合后平均量的一种简便方法。十字交叉法一般只用于两个部分相关的平均值问题,且运用的前提已知总体平均值r。5.图解法图解法就是利用图形来解决数学运算的方法。图解法简单直观,能够清楚表现出问题的过程变化。一般说来,图解法适用于绝大部分题型,尤其是在行程问题、年龄问题、容斥问题等强调分析过程的题型中运用得很广。图解法运用的图形包括线段图、网状图/树状图、文氏图和表格等。线段图即是用线段来表示数字和数量关系的方法。一般情况下,我们会用线段来表示量与量之间的倍数关系或者整个运动过程等,来解决和差倍比问题、行程问题等。线段图在行程问题中非常有效,因为它能够帮助考生快速理清各物体的运动过程,从而找到物体速度或者路程之间的关系。网状图或树状图一般用来解决过程或者数量关系比较复杂的题型,比如排列组合问题、推理问题或者时间安排类的对策分析问题。文氏图就是用圆圈来表示一类事物的图形,一般只有容斥问题会用到文氏图。利用表格可以将多次操作问题和还原问题中的复杂过程一一表现出来。同时,我们也可以用表格来理清数量关系,帮助列方程。6.分合法分合法就是利用分与合两种不同的思维解答数学运算的方法。所谓“分”,就是将一个问题拆分成若干个小问题,然后从局部来考虑每个小问题;所谓“合”,就是把若干问题合在一起,从整体上思考这些问题。也就是说,“分”就是局部考虑,是拆分;“合”是整体考虑,是整合。分合法一般适用于排列组合与概率问题、解方程等。分合法常用的两种思路为分类讨论和整体法。(一)分类讨论分类讨论,是指当不能对问题所给的对象进行统一研究时,需要对研究对象按某个标准进行分类,逐类研究,最后将结论汇总得解的方法。在进行分类讨论时,要注意分类标准统一,分类情况不遗漏、不重复,不越级讨论。分类讨论与加法原理经常一起使用,一般是多种情况分类讨论以后,再利用加法原理求出总的情况数。(二)整体法整体法与分类讨论正好相反,它强调从整体上来把握变化,而不是拘泥于局部的处理整体法有两种表现形式:1.将某一部分看成一个整体,在问题中总是一起考虑,而不单独求解;2.不关心局部关系,只关心问题的整体情况,直接根据整体情况来考虑关系。这种形式经常用于平均数问题。7.极端法极端法是指通过考虑问题的极端状态,探求解题方向或转化途径的一种常用方法。极端法一般适用于鸡兔同笼问题、对策分析类问题等。在公务员考试中运用极端法的情况主要有分析极端状态和考虑极限图形与极限位置两种情况。(一)分析极端状态先分析并找出问题的极限状态,再与题干条件相比较,作出相应调整,得出所求问题的解。公务员考试中的鸡兔同笼问题以及出现“至多”“至少”等字样的题,均可通过分析问题的极端状态来求解。(二)考虑极限图形与极限位置极限图形:主要是利用一些几何知识。例如,对于空间几何体,当表面积相同时,越趋近于球体的体积越大;同理,当体积相同时,越趋近于球体的表面积越小。极限位置:首先找到图形中满足条件的极端位置,再判断极端位置与题中所求之间的关系,进而求出题目答案。从历年的考试大纲和历年的考试分析来看,数学运算主要涉及到以下几个问题:行程问题,比例问题、不定方程、抽屉问题、倒推法问题、方阵问题和倍差问题、利润问题、年龄问题、牛吃草问题、浓度问题、平均数、数的拆分、数的整除性、速算与巧算,提取公因式法、统筹问题、尾数计算法、植树问题、最小公倍数和最大公约数问题等等。每一类问题的题型都有相应的解法,只有熟练掌握这些解法,才能提高我们的解题速度,节约时间,在考试中考出优异的成绩。下面国家公务员考试网(/)专家就行程问题中的相遇问题做专项的讲解。行程问题的基础知识行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。我们可以简单的理解成:相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。相遇(相离)问题的基本数量关系:速度和相遇时间=相遇(相离)路程追及问题的基本数量关系:速度差追及时间=路程差在相遇(相离)问题和追及问题中,考生必须很好的理解各数量的含义及其在数学运算中是如何给出的,这样才恩能够提高解题速度和能力。一、相遇问题:知识要点:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么A,B两地的路程=(甲的速度+乙的速度)相遇时间=速度和相遇时间相遇问题的核心是“速度”和“问题”。【例1】、某校下午2点整派车去某厂接劳模作报告,往返需1小时。该劳模在下午1点就离厂步行向学校走来,途中遇到接他的车,便坐上车去学校,于下午2点30分到达。问汽车的速度是劳模步行速度的( )倍。A. 5 B. 6 C. 7 D. 8解析:【答案】A.方法1、方程法,车往返需1小时,实际只用了30分钟,说明车刚好在半路接到劳模,故有,车15分钟所走路程=劳模75分钟所走路程(2点15-1点)。设劳模步行速度为a,汽车速度是劳模的x倍,则可列方程,75a=15ax,解得 x=5.方法2、由于, 车15分钟所走路程=劳模75分钟所走路程,根据路程一定时,速度和时间成反比。所以 车速:劳模速度=75:15=5:1【例2】、甲、乙二人同时从相距60千米的两地同时相向而行,6小时相遇。如果二人每小时各多行1千米,那么他们相遇的地点距前次相遇点1千米。又知甲的速度比乙的速度快,乙原来的速度为( )A.3千米/时 B.4千米/时 C.5千米/时 D.6千米/时解析:【答案】B,原来两人速度和为606=10千米/时,现在两人相遇时间为60(10+2)=5小时,采用方程法:设原来乙的速度为X千米/时,因乙的速度较慢,则5(X+1)=6X+1,解得X=4.注意:在解决这种问题的时候一定要先判断谁的速度快。方法2、提速后5小时比原来的5小时多走了5千米,比原来的6小时多走了1千米,可知原来1小时刚好走了5-1=4千米。【例3】、甲、乙两车从A、B两地同时出发,相向而行,如果甲车提前一段时间出发,那么两车将提前30分相遇。已知甲车速度是60千米/时,乙车速度是40千米/时,那么,甲车提前了多少分出发( )分钟。A. 30 B. 40 C. 50 D. 60解析:【答案】C,本题涉及相遇问题。方法1、方程法:设两车一起走完A、B两地所用时间为x,甲提前了y时,则有, (60+40)x=60y+(x-30)+40(x-30), y=50方法2、甲提前走的路程=甲、乙 共同走30分钟的路程,那么提前走的时间为,30(60+40)/60=50二、二次相遇问题:知识要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。则有:第二次相遇时走的路程是第一次相遇时走的路程的两倍。【例4】、甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。请问A、B两地相距多少千米?A.120 B.100 C.90 D.80解析:【答案】A.方法1、方程法:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即542=x-54+42,得出x=120.方法2、乙第二次相遇所走路程是第一次的二倍,则有542-42+54=120.总之,利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。一、抽屉问题原理抽屉原理最先是由19世纪的德国数学家迪里赫莱运用于解决数学问题的,所以又称为“迪里赫莱原理”,也被称为“鸽巢原理”。鸽巢原理的基本形式可以表述为:定理1:如果把N+1只鸽子分成N个笼子,那么不管怎么分,都存在一个笼子,其中至少有两只鸽子。证明:如果不存在一个笼子有两只鸽子,则每个笼子最多只有一只鸽子,从而我们可以得出,N个笼子最多有N只鸽子,与题意中的N+1个鸽子矛盾。所以命题成立,故至少有一个笼子至少有两个鸽子。鸽巢原理看起来很容易理解,不过有时使用鸽巢原理会得到一些有趣的结论:比如:北京至少有两个人头发数一样多。证明:常人的头发数在15万左右,可以假定没有人有超过100万根头发,但北京人口大于100万。如果我们让每一个人的头发数呈现这样的规律: 第一个人的头发数为1,第二个人的头发数为2,以此类推,第100万个人的头发数为100万根;由此我们可以得到第100万零1个人的头发数必然为 1-100万之中的一个。于是我们就可以证明出北京至少有两个人的头发数是一样多的。定理2:如果有N个笼子,KN+1只鸽子,那么不管怎么分,至少有一个笼子里有K+1只鸽子。举例:盒子里有10只黑袜子、12只蓝袜子,你需要拿一对同色的出来。假设你总共只能拿一次,只要3只就可以拿到相同颜色的袜子,因为颜色只有两种(鸽巢只有两个),而三只袜子(三只鸽子),从而得到“拿3只袜子出来,就能保证有一双同色”的结论。二、公务员考试抽屉问题真题示例在历年国家公务员考试以及地方公务员考试中,抽屉问题都是重要考点,下文,通过经典例题来分析抽屉原理的使用。例1:从1、2、3、12中,至少要选( )个数,才可以保证其中一定包括两个数的差是7?A. 7 B. 10 C. 9 D. 8解析:在这12个数中,差是7的数有以下5对:(12,5)、(11,4)、(10,3)、(9,2)、(8,1)。另有两个数6、7肯定不能 与其他数形成差为7的情况。由此构造7个抽屉,只要有2个数取自一个抽屉,那么他们的差就等于7。从这7个抽屉中能够取8个数,则必然有2个数取自同一个 抽屉。所以选择D选项。例2:某班有37名同学,至少有几个同学在同一月过生日?解析:根据抽屉原理,可以设312+1个物品,一共是12个抽屉,则至少有4个同学在同一个月过生日。熟练掌握抽屉原理,能有效提高数量关系中抽屉原理相关问题的解答速度,这对于寸秒寸金的行测考试来说是非常有利的。牛吃草问题”是考生们普遍反映得较为困难的一类题型,国家公务员考试网()对牛吃草问题做如下总结:【例题1】一个牧场,可供10头牛吃20天、15头牛吃10天,可供多少头牛吃4天?方法一:将“牛吃草问题”想象成一个非常理想化的数学模型:假设总的牛当中有X头是“剪草工”,这X头牛只负责吃“每天新长出的草,并且把它们吃完”,这样草场相当于不长草,永远维持原来的草量,也就成为了一个简单的消耗性问题了,而剩下的(27X)头牛是真正的“顾客”,它们负责把草场原来的草吃完。便可以根据几次“顾客”牛的数量*时间这个量相等,也就是牧场原本的一地草量相等来列方程。例题解析:设每天新增加草量恰可供X头牛吃一天,N头牛可吃4天(后面所有X均为此意)可供10头牛吃20天, 列式:(10X)*20即:(10X)头牛20天把草场吃完可供15头牛吃10天, 列式:(15X)*10即:(15X)头牛9天把草场吃完可供几头牛吃4天? 列式:(NX)*4即:(NX)头牛4天把草场吃完因为草场草量新长出的草已被“剪草工”修理掉,而牧场中原有草量相同,所以,联立上面三个式子(10X)*20 (15X)*10(NX)*4左右两边各为一个方程,即:(10X)*20 (15X)*10 【1】(15X)*10(NX)*4 【2】解这个方程组,得 X5(头) Y30(头)方法二:将“牛吃草问题”与工程问题当中的干扰问题相结合。例如:工程问题中有这样一类题目:【例题2】一个浴缸放满水需要30分钟,排光一浴缸水需要50分钟,假如忘记关上出水口,将这个浴缸放满水需要多少分钟( )A.65 B.75 C.85 D.95题目当中叙述了一缸水有一个进水管和一个出水管同时打开,而进行把一个浴缸放满水的效果,进水管的效率大于出水管的效率,也就是两个水管同时工作的总效率为:进水管工作效率-出水管工作效率。我们假设工程总量为1,于是进水的效率为1/30,出水的效率为1/50。那么根据工作总量=工作效率*工作时间可以列出如下方程:(1/30-1/50)*t=1。解方程便可以得知同时开放两个水管把浴缸放满要75分钟。此题当中是一个进水管做正功,一个出水管做负功,最后达到将一个空浴缸放满水的效果这样一类问题的方法可以总结为(进水效率-出水效率)*时间=一个浴缸的水。而牛吃草问题与之类似,只是牛吃草问题是牧场原有一地草,经过了牛吃和长草两个同时进行的过程后,一地草消失了。与给浴缸放水问题的差异是,浴缸放水问题进水效率大于出水效率,最后达到空缸变满缸的效果。而牛吃草问题,吃草效率大于长草效率,最后达到了满地草变成空地的效率。于是可以找出与浴缸放水类似的等量关系:(牛吃草的效率-草地长草的效率)*时间=一个牧场的草。而此时就需要我们假设一头牛一天只吃一棵草,那么牛吃草的效率在数量上便可以等价于牛的数量,于是该等量关系变成:(牛的数量-草地长草效率)*时间=一个牧场草。而其中“草地长草效率”和“一个牧场的草”两个概念都是未知量,我们分别把它们设为X和Y,根据题目当中的条件,可以列出下列方程:(10X)*20Y 【1】(15X)*10Y 【2】解这个方程组,得 X5(头) Y100(棵)再假设草地上的草N牛可吃4天,可以列出下面一个方程:(N5)*4 100,解方程得:N=30(头)我们发现用两种方法求解,其分析过程不同和假设的关系不同,但最后列出的方程其实是同样的形式。在实际授课中发现后一种方法学生接受起来更加容易一些,而且这种方法较易推广。近年来国考和省考中对牛吃草问题的考察较多,但已经完全不见“牛吃草”的表述,有些省份的考题甚至简单从其外观无法发现该问题是“牛吃草问题”。【例题3】在春运高峰时,某客运中心售票大厅站满等待买票的旅客,为保证售票大厅的旅客安全,大厅入口处旅客排队以等速度进入大厅按次序等待买票,买好票的旅客及时离开大厅。按照这种安排,如果开出10个售票窗口,5小时可使大厅内所有旅客买到票;如果开12个售票窗口,3小时可使大厅内所有旅客买到票,假设每个窗口售票速度相同。由于售票大厅票窗口,大厅入口处旅客速度增加到原速度的1.5倍,在2小时内使大厅中所有旅客买到票,按这样的安排至少应开售票窗口数为A.15 B.16 C.18 D.19对于此题已经完全不见其中有牛和草的字样,但仔细分析题目,发现其实本题也是售票大厅原来站满了旅客,而同时存在售票使旅客离开和有旅客进入大厅买票两个效率,而旅客离开的效率大于进入大厅的效率,于是最后售票大厅中的全部旅客成功购票离开。也就是满大厅变为空大厅。这样分析这个过程其实和牛吃草是一样的,有如下等量关系:(售票效率-进入旅客效率)*时间=大厅中原有旅客数量。这样可以列出如下方程组:(10X)*5Y 【1】(12X)*3Y 【2】解这个方程组,得 X7(人) Y15(人)再假设所求窗口数为N,(N-1.5*7)*215,解方程得:N=18(个)综合以上两个问题,“牛吃草问题”实际上是一个消耗和生产的问题,只是消耗量效率大于生产效率,于是等量关系变成:(消耗效率-生产效率)*时间=原有量即前后差异量。这样便无需仔细分析其中的过程便可以应用这个等量关系来列方程,而与假设1牛1天吃1棵草类似,该等量关系可以转化为(消耗者数量-生产效率)*时间=前后差异量。得出这样一个等量关系,考生在应试当中只要遇到同时有消耗和产出的前后变化问题,都可以用该等量关系求解。便使这一类学生视为难点的“牛吃草问题”转化为一个简单的代公式过程,从而轻松解决。页码问题解题基本原理要想要想顺利解答页码问题,首先要弄明白“页码”与“组成它的数码个数”之间的关系。我们知道:一位数共有9个(从19),组成所有的一位数需要9个数码;两位数共有90个(从1099),组成所有的两位数需要290=180(个)数码;三位数共有900个(从100999),组成所有的三位数需要3900=2700(个)数码。三、历年真题讲解【例1】:一本书的页码从1开始,经过计算总共出现了202个数字1,问这本书一共有多少页?( )A.510 B.511 C.617 D.713【答案及解析】:A。关于三位数字中“1”的出现次数,公式如下:出现次数=(总数5)取整百+100+(其他多余情况),将四个选项带入公式中只有A项510符合。【注:(5105)取整百的结果是100;从501到510这10个数中,1出现了2次,故其他多余情况为2】。故选A【例2】:一本书共204页,需多少个数码编页码?( )A. 501 B. 502 C. 503 D. 504【答案及解析】:D。本题是已知数码数,求页码数。19页每页上的页码是一位数,共需数码19=9(个);1099页每页上的页码是两位数,共需数码290=180(个);100204页每页上的页码是三位数,共需数码(204-100+1)3=1053=315(个)。综上所述,这本书共需数码9+180+315=504(个)。故选D。【例3】:编一本书的书页,用了270个数字(重复的也算,如页码115用了2个1和1个5共3个数字),问这本书一共多少页?( )A. 117B. 126C. 127D. 189【答案及解析】:B。本题是已知数码数,求页码数。一共用了270个数字,其中一位数用了9个数字,两位数用了180个数字,那么三位数用的数字就是270-9-180=81个数字。813=27,因此三位数的页码共27页,从100起算,到126页就是27页,因此这本书一共126页。故选B。工程问题是历年公务员考试的重点,是近年来考试中最重要、最常考的重点题型之一,需要考生重点掌握。工程类问题涉及到的公式只有一个:工作量=时间效率,所有的考题围绕此公式展开。近年来,工程问题的难度有所上升,然而其解题步骤仍然较为固定,一般而言分为3步:(1)设工作总量为常数(完成工作所需时间的最小公倍数);(2)求效率;(3)求题目所问。即使是较为复杂的工程问题,运用这一解题步骤也可解出。一、同时合作型例1、同时打开游泳池的A,B两个进水管,加满水需1小时30分钟,且A管比B管多进水180立方米,若单独打开A管,加满水需2小时40分钟,则B管每分钟进水多少立方米?()(2011年国家公务员考试行测试卷第77题)A、6B、7C、8D、9答案:B解析:套用工程类问题的解题步骤:(1)设工作总量为完成工作所需时间的最小公倍数,A、B管加满水需要90分钟,A管加满水需160分钟,因此把水量设为1440份。(2)分别求出A、B工作效率:A、B管每分钟进水量=16份,A每分钟进水量=9份,因此B每分钟进水量=7份。(3)求题目所问。由于B效率为7份,因此B管每分钟的进水量必定是7的倍数,四个选项,只有B选项是7的倍数,因此可直接选出B选项。点睛:同时合作型题是历年考试中常考的工程类问题之一,近年难度有所增加。这道题目中,涉及到了具体的量A管比B管多进水180立方米,因此不能把工作量设为一个简单的常数,而必须把其设为份数。二、交替合作型例2、一条隧道,甲用20天的时间可以挖完,乙用10天的时间可以挖完,现在按照甲挖一天,乙再接替甲挖一天,然后甲再接替乙挖一天如此循环,挖完整个隧道需要多少天?()A、14B、16C、15D、13答案:A解析:套用工程类问题的解题步骤:(1)设工作总量为完成工作所需时间的最小公倍数,甲、乙完成工作各需20天、10天,因此设工作总量为20。(2)分别求出甲、乙工作效率:甲效率=1,乙效率=2。(3)求题目所问。题目要求让甲、乙轮流挖,一个循环(甲乙两人各挖1天)共完成工作量1+2=3。如此6个循环后可以完成工作量18,还剩余2,需要甲挖1天,乙挖半天。因此一共需要时间62+1+1=14(天)。过河问题基本知识点1.M个人过河,船上能载N个人,由于需要一人划船,故共需过河M-1N-1次(分子、分母分别减“1”是因为需要1个人划船,如果需要n个人划船就要同时减去n);2.“过一次河”指的是单程,“往返一次”指的是双程;3.载人过河的时候,最后一次不再需要返回。例题详解【例1】有37名红军战士渡河,现仅有一只小船,每次只能载5人,需要几次才能渡完?()A. 7次 B. 8次 C. 9次 D. 10次答案C解析根据公式:(37-1)/(5-1)=36/4=9次。【例2】49名探险队员过一条小河,只有一条可乘7人的橡皮船,过一次河需3分钟。全体队员渡到河对岸需要多少分钟?()A. 54 B. 48 C. 45 D. 39答案C解析根据公式:全部渡过需要(49-1)/(7-1)=48/6=8次,前七次渡河需要往返各一次;第八次渡河则只需过河一次,所以八次渡河共需过十五次河(即15个单程),每次过河需要3分钟,所以共需要45分钟。【例3】有42个人需要渡河,现仅有一只小船,每次只能载6人,但需要3个人划船。请问一共需要几次才能渡完?()A. 10次 B. 11次 C. 12次 D. 13次答案D解析根据公式:(42-3)/(6-3)=39/3=13次。【例4】有一只青蛙掉入一口深10米的井中。每天白天这只青蛙跳上4米晚上又滑下3米,则这只青蛙经过多少天可以从井中跳出?()A. 7 B. 8 C. 9 D. 10答案A解析除最后一天外,青蛙每天白天跳上4米,而晚上又滑下3米,一昼夜来回共上升1米,所以第六天到了“第6米”的地方,第七天的时候,再向上跳四米,那么白天就可以跳出井外,所以答案应该选择A。注释本题相当于一个“过河问题”,一共10个人,船上能承载4个人,但需要3个人划船,所以共需要10-34-3=7天。【题5】有一只青蛙掉入一口深20米的井中。每天白天这只青蛙跳上5米晚上又滑下3米,则这只青蛙经过多少天可以从井中跳出?()A. 7 B. 8 C. 9 D. 10答案C解析看作“过河问题”,(20-3)/(5-3)=8.5,所以需要9天。【例6】32名学生需要到河对岸去野营,只有一条船,每次最多载4人(其中需1人划船),往返一次需5分钟,如果9时整开始渡河,9时17分时,至少有()人还在等待渡河。A. 15 B. 17 C. 19 D. 22答案C解析由于9时开始渡河,往返一次需5分钟,9点、9点5分、9点10分、9点15分,船各运一批人过河,所以一共运了4次(其中第4次还在路上)。因此,共有“4(4-1)+1=13人”已经离开了出发点,因此至少有32-13=19人等待渡河。星期日期这类问题难度不大,但得分率较低,考生稍有马虎就可能做错。究其原因,星期日期问题通常涉及平年、闰年以及大、小月的问题,正所谓年年不相似,月月不相同,从而导致考生在考试过程中会出现思维混乱、算不清楚的状况。为了帮助考生能顺利解答这类问题,国家公务员考试网特结合此类问题常考的题型,有针对性的提出解题方法。一、基础知识星期日期问题通常涉及平年、闰年以及大、小月的问题,因此,学会判定平年、闰年以及大、小月份非常重要。1、闰年与平年闰年判定口诀:四年一闰,百年不闰,四百年再闰,三千二百年再不闰。即:能被4整除但不能被100整除的是闰年(如2011不是闰年,2012是闰年)能被400整除但不能被3200整除的是闰年(如2000是闰年,2100不是闰年,3200也不是闰年)闰年(2月有29天,全年有366天):满足以上两个条件中任意一个条件平年(2月有28天,全年有365天):两个条件都不满足2、大月与小月二、基本题型1、已知x年x月x日为星期x,求x年x月x日为星期几?这是星期日期问题中最常见的题型,此类问题又可细分为以下几种小题型:(1)所求日期与已知日期同月同日不同年解决此类问题,只用记住一句话:每过一年星期数增加1,过闰日再加1.也就是说,每过一年,星期数就在原来的基础上加1,如果这个时间段包含“2月29日”这一天,则需要再加1(有几个2月29日就加几个1)。例1:2011年6月24日是星期五,求2012年6月24日是星期几?A、星期五 B、星期六 C、星期日 D、星期一【答案】C【解析】2011年6月24日到2012年6月24日正好过了一年,星期数应该先加1(每过一年星期数增加1),又由于2012年是闰年,有2月29日这天,而2011年6月24日到2012年6月24日这段时间正好包括了2月29日这天,因此需要再加1(过闰日再加1),一共加2。所以,2012年6月24日为星期日。例2:2012年6月24日是星期日,求2013年6月24日是星期几?A、星期一 B、星期二 C、星期三 D、星期四【答案】A【解析】2012年6月24日到2013年6月24日正好过了一年,星期数应该先加1(每过一年星期数增加1),但是这里需要注意的是,尽管2012年是闰年,有2月29日这天,但2012年6月24日到2013年6月24日这段时间不包括2月29日这天,因此不需要再加1。所以,2013年6月24日为星期一。例3:2003年7月1日是星期二,那么2011年7月1日是星期几?A、星期四 B、星期五 C、星期六 D、星期日【答案】B【解析】每过一年星期数增加1,过闰日再加1,从2003到2011共8年,先加8,中间有两个闰日,再加2,一共加10,即加3,所以2011年7月1日是星期五。【核心提示】在星期日期问题中,凡是要求星期几,其核心就在于“过7天与不过是一样的”,所以直接划掉天数中7的倍数即可。当(要求的年份-已知的年份)是4的倍数且月份和日期都不变时,增加的闰日就是相隔年数除以4得到的商。当(要求的年份-已知的年份)除以4除不尽时,先求已知的年份+余数年的星期数,然后再进行前面同样的计算。(2)所求日期与已知日期同年同日不同月解决此类问题,同样只用记住一句话:每过一个月,星期数增加(前月总天数-28)。例4:2011年6月24日是星期五,求2011年10月24日是星期几?A、星期一 B、星期二 C、星期三 D、星期四【答案】A【解析】2011年6月、7月、8月、9月分别有30天、31天、31天、30天,故星期数应该增加2+3+3+2=10,即加3,故2011年10月24日是星期一。(3)所求日期与已知日期同年同月不同日此类问题非常简单,记住口诀:星期数增加(日期之差除以7所得余数)。例5:2011年6月20日是星期一,求2011年6月30日是星期几?A、星期一 B、星期二 C、星期三 D、星期四【答案】D【解析】日期之差为10,除以7余数为3,即星期数+3,所以,2011年6月30日是星期四。(4)所求日期与已知日期年/月/日都不同这类题是以上三类题的综合版,解题思想为:先考虑年份,再考虑月份,再考虑日期。例6:2008年8月8日是星期五,求2010年10月10日是星期几?A、星期四 B、星期五 C、星期六 D、星期日【答案】D【解析】2008年8月8日到2010年8月8日,经过2年且不包含2月29日这一天,根据每过一年星期数增加1,过闰日再加1,2010年8月8日为星期日。2010年8月8日到2010年10月8日,经过两个月,8月、9月分别有31天和30天,根据每过一个月,星期数增加(前月总天数-28),因此,一共增加3+2=5,所以2010年10月8日为星期五。2010年10月8日与2010年10月10日相差2天,根据星期数增加(日期之差除以7所得余数),所以2010年10月10日为星期日。2、已知某天(昨天、今天、明天等)之前或之后x天是星期x,求某天(昨天、今天、明天等)之前或之后x天是星期几?这类题型主要考察的是不同日期之间的间隔天数,这个间隔天数是通过之前或之后x天来表述的。解题方法是:画图,将已知星期几的那天作为初始日期,求出所求日期与初始日期的间隔天数,用间隔天数除以7得到余数a,将初始日期的星期数往前(所求日期在初始日期之前的往前推)或往后(所求日期在初始日期之后的往后推)推a天即求出所求日期的星期数。例7:假如“昨天”之后的第15天为星期二,则“明天”之前的第100天为星期几?(上海2005)A、星期日 B、星期三 C、星期一 D、星期二【答案】C【解析】 ? 100 昨今明 15 星期二将“昨天”之后的第15天星期二作为初试日期,画图,从图中可以看出所求日期与初始日期相隔100+15-2=113天,113除以7余数为1,所以所求日期为初始日期往前推1天,即星期一(所求日期在初始日期的过去,所以往前推)。3、某年/月有x个星期x,求该年/月有几个星期x(或者求x年x月x日为星期几)?这类题型相较前面两类,难度有所提升。与前面两类题目不同的是,我们不能直接确定初始日期,需要借助生活常识来挖掘隐含条件,确定初始日期,然后才能按照前面的方法解题。例8:某月有四个星期四和五个星期五,请问该月16号星期几?A、星期四 B、星期五 C、星期六 D、星期日【答案】C【解析】一般星期四与星期五是连着的,但是根据题目意思,该月有四个星期四和五个星期五,说明某个连着的星期四与星期五中,星期五属于这个月而星期四不属于这个月,而只有当该月1号时星期五才满足这个条件。所以确定该月1号为星期五,16号与1号相隔15天,15除以7余数为1,所以16号为星期六。三、小结星期日期问题本身并不太难,只要考生掌握其实质:所求星期数=已知星期数+(间隔天数除以7所得余数),结合上述方法,一般都能在较短的时间做出正确的答案。对于星期日期问题的难点就在于求间隔天数,而间隔天数的求解过程往往会涉及闰年、平年以及大小月的问题,所以考生在解题的过程一定要细心,避免出现不应该犯的错误。对于上述的解题口诀,理解之后再应用,可以大大提高解题速度。排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。排列:排列的字母表示是A(m,n),表达的意思是从n个元素中取出m个元素,进行全排列(对m个元素进行排序)。组合:组合的字母表示是C(m,n),表达的意思是从n个元素中取m个元素,不进行排列(对m个元素不进行排序)。排列与元素的顺序有关,组合与顺序无关。如231与213是两个排列,231的和与213的和是一个组合。下面,总结以下4大方法教您巧做排列组合题型。一、特殊优先法特殊元素,优先处理;特殊位置,优先考虑。例:六人站成一排,求(1)甲不在排头,乙不在排尾的排列数;(2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数。分析:(1)先考虑排头,排尾,但这两个要求相互有影响,因而考虑分类。第一类:乙在排头,有A(5,5)种站法;第二类:乙不在排头,当然他也不能在排尾,有44A(4,4)种站法;共A(5,5)+44A(4,4)种站法。(2)第一类:甲在排尾,乙在排头,有A(4,4)种方法;第二类:甲在排尾,乙不在排头,有3P(4,4)种方法;第三类:乙在排头,甲不在排头,有4P(4,4)种方法;第四类:甲不在排尾,乙不在排头,有P(3,3) A(4,4)种方法;共P(4,4)+3A(4,4)+4A(4,4)+A(3,3) A(4,4)=312种。二、捆绑法与插空法例1:某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况?分析:连续命中的三枪与单独命中的一枪不能相邻,因而这是一个插空问题。另外没有命中的之间没有区别,不必计数。即在四发空枪之间形成的5个空中选出2个的排列,即A(5,2)。例2:马路上有编号为l,2,3,10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种?分析:即关掉的灯不能相邻,也不能在两端。又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯。共C(3,6)=20种方法。三、隔板法例:10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法?分析:把10个名额看成十个元素,把这10个元素任意分成8份,并且每份至少有一个类似该种思维,实际上就是在这十个元素之间形成的九个空中,选出七个位置放置档板,就可以很形象的达到目标。四、间接计数法例:三行三列共九个点,以这些点为顶点可组成多少个三角形? 分析:有些问题正面求解有一定困难,可以采用间接法。比如说该题直接去求三角形的个数分类太多,比较复杂;换个方式思考,所求问题的方法数=任意三个点的组合数-三点共线的情况数。倍数关系核心判定特征:如果a/b=m/n(m,n互质),则a是m 的倍数;b是n的倍数。如果a=(m/n)b(m,n互质) ,则a是m的倍数;b是n 的倍数。如果a/b=m/n(m,n互质),则ab应该是m n的倍数当数学运算题目中出现了百分数(浓度问题除外)、分数和倍数关系时,可考虑能否用倍数关系核心判定特征快速解题。在应用的时候,一般是从所求的量入手,根据题目所给的条件构建倍数比例关系 。例1、某城市共有四个区,甲区人口数是全城的4/13,乙区的人口数是甲区的5/6,丙区人口数是前两区人口数的4/11,丁区比丙区多4000人,全城共有人口多少万?(2003年浙江公务员考试行测第17题)A、18.6万B、15.6万C、21.8万D、22.3万答案:B解析:读完这个题目,发现多处出现分数,我们优先考虑能否用倍数关系核心判定特征快速解题。题目求得事全城人口,观察发现与这个量有关系的就是题目中第一个条件,即“甲区人口数是全城的4/13”,显然可以构建一个等价比例关系,即:甲区=(4/13)全城,有倍数关系核心判定特征马上知道,全城应该是13的倍数,代入选项,发现只有B符合。例2、某班男生比女生人数多 80%,一次考试后,全班平均成绩为 75 分,而女生的平均分比男生的平均分高 20% ,则此班女生的平均分是()(2007年国家公务员考试行测第52题)A、84 分B、85 分C、86 分D、87 分答案:D解析:读完这个题目,发现两处出现百分数,我们优先考虑能否用倍数关系核心判定特征解题。题目求的是女生平均分,观察发现与这个量有关系的就是题目中最后一个条件,即“而女生的平均分比男生的平均分高 20%”,显然可以构建一个等价比例关系,即:女生/男生=1 20%=120/100=6/5,有倍数关系核心判定特征马上知道,女生平均分应该是6的倍数,代入选项,发现只有A符合。例3、有一食品店某天购进了 6 箱食品,分别装着饼干和面包,重量分别为 8、9、16、20、22、27 公斤。该店当天只卖出一箱面包,在剩下的 5 箱中饼干的重量是面包的两倍,则当天食品店购进了( )公斤面包(2007年国家公务员考试行测第60题)A、44B、45C、50D、52答案:D解析:读完这个题目,发现两处出现倍数,我们优先考虑能否用倍数关系核心判定特征解题。题目求的是购进面包重量,观察发现与这个量有关系的就是题目中最后一个条件,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 惠州烟花安全知识培训课件
- 情绪小怪兽课件
- 深海新质生产力
- 新员工培训活动方案
- 公司员工绩效考核方案管理
- 恒温机械设备基础知识培训课件
- 恐龙课件教学课件
- 制定教学工作进度方案
- 2026届山东省青岛胶州市化学高二第一学期期末达标检测试题含答案
- 装修勘察考试题及答案
- 民族文化宫2025年公开招聘17人笔试模拟试题含答案详解
- 2025年幼儿园教师专业考试试题及答案书
- 2025秋新部编版一年级上册语文教学计划+教学进度表
- 2025年国家公务员考试行测真题及答案(完整版)
- 小型企业网络构建:VPN设置与配置详解
- 消化道内异物疑难病例讨论
- 2025年预防接种技能竞赛征集试题
- 道路运输安全生产法律法规有哪些
- 年度述职活动方案
- 抗衰老培训课件
- 肿瘤科讲课课件
评论
0/150
提交评论