圆周卷积与周期卷积、线性卷积的关系与计算.doc_第1页
圆周卷积与周期卷积、线性卷积的关系与计算.doc_第2页
圆周卷积与周期卷积、线性卷积的关系与计算.doc_第3页
圆周卷积与周期卷积、线性卷积的关系与计算.doc_第4页
圆周卷积与周期卷积、线性卷积的关系与计算.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

写在前面:本文主要讨论圆周卷积的一种特殊情况:圆周卷积的点数小于参与卷积的序列的长度的情况。这种情况在大多数数字信号处理教材和习题中都没有专门提及或涉及,所以在计算过程中给很多同学带来了困惑。结课后这两天终于能轻松一点,重新把这个问题思考了一下,整理成文,供大家学习讨论。从信号与系统的角度来考虑,“圆周卷积的点数小于参与卷积的序列的长度的情况”不具有太多的实际意义,因为在这种情况下信号周期化的过程中存在混叠,运算前信号已经产生失真。但从理论的角度来看,作为圆周卷积的一种特殊情况还是值得讨论的,通过讨论可以更好的理解圆周卷积与周期卷积、线性卷积的关系及计算方法。另外,本文与考试无关,仅希望通过本文让大家更好的理解三种卷积之间的关系。如有疑问,可继续讨论。 黄勇坚 2011年7月3日圆周卷积与周期卷积、线性卷积的关系及计算一、三者关系设:N:圆周卷积的点数n 圆周卷积是周期卷积的主值序列。周期卷积: (1)圆周卷积: (2)注意: (2)式直接使用的前提是圆周卷积的点数N应满足:(一般题目均符合此种情况) 若时,则不能直接用(2)式计算,否则分别用(2)式中的两个公式计算,即在卷积顺序不同时,会出现计算结果不一致的问题。这种情况下应从圆周卷积与周期卷积的关系出发,将(2)式改为:(3) 即在此种情况下,首先需对都进行周期为N的延拓,然后再取主值序列进行计算。n 周期卷积是线性卷积的周期延拓。线性卷积: (4)圆周卷积与线性卷积的关系: (5)注意:上述关系式对任意长度的圆周卷积均适合。二、举例说明1、对于的情况,各教材例题很多,不再举例。2、的情况:以教材P114 习题8为例。习题8.已知序列, ,求:(1)(2)(5点圆周卷积)。解:(1)(过程略)(2)(5点圆周卷积),N=5。下面分别用三个公式计算,最后对结果进行讨论:*利用公式:计算*a. 先将以5点进行周期性延拓,然后取其主值序列。计算过程如下:-5-4-3-2-1012345678910m120013x(m+5)120013x(m)120013x(m-5)4200142001420014x(m)5主值区间b. 再将也以5点进行周期性延拓并翻褶,然后取其主值序列。-5-4-3-2-1012345678910m1111011110111101y(m)51011110111101111y(-m)5主值区间c最后移位、相乘并相加,这些运算只需考虑主值序列即可。-5-4-3-2-1012345678910mf(n)42001x(m)10111y(-m)511011y(1-m)711101y(2-m)711110y(3-m)601111y(4-m)3主值区间所以:=5,7,7,6,3*利用公式:计算*a. 先将以5点进行周期性延拓,然后取其主值序列。-5-4-3-2-1012345678910m111101111011110y(m)5主值区间b. 再将以5点进行周期性延拓并翻褶,然后取其主值序列。-5-4-3-2-1012345678910m4200142001420014x(m)54100241002410024x(-m)5主值区间c最后移位、相乘并相加,这些运算只需考虑主值序列即可。-5-4-3-2-1012345678910mf(n)11110y(m)41002x(-m)524100x(1-m)702410x(2-m)700241x(3-m)610024x(4-m)3主值区间所以:=5,7,7,6,3可见,结果与前一个公式的计算结果一致,与圆周卷积的顺序无关。*利用圆周卷积与线性卷积的关系计算*-5-4-3-2-1012345678910n133334443z(n+5)133334443z(n)133334z(n-5)57763f(n)主值区间所以:=5,7,7,6,3可见,计算结果与前两个公式一致,而且这种方法计算过程比较简单,但前提是先计算出线性卷积的结果。三、结论n 圆周卷积的计算始终要记住一点:圆周卷积虽然是针对有限长序列的卷积运算,但它是由周期卷积推导而来的,故隐含了周期性。n (2)式虽然是圆周卷积的定义式,但要正确理解,灵活应用。它是在满足的前提下由周期卷积推导而来

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论