




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时达标检测(四十八) 曲线与方程练基础小题强化运算能力1已知点O(0,0),A(1,2),动点P满足|PA|3|PO|,则P点的轨迹方程是()A8x28y22x4y50B8x28y22x4y50C8x28y22x4y50D8x28y22x4y50解析:选A设P点的坐标为(x,y),则3,整理得8x28y22x4y50.2方程(x2y22x)0表示的曲线是()A一个圆和一条直线 B一个圆和一条射线C一个圆 D一条直线解析:选D依题意,题中的方程等价于xy30或注意到圆x2y22x0上的点均位于直线xy30的左下方区域,即圆x2y22x0上的点均不满足xy30,不表示任何图形,因此题中的方程表示的曲线是直线xy30.3设圆(x1)2y225的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为()A.1 B.1C.1 D.1解析:选D如图,M为AQ的垂直平分线上一点,则|AM|MQ|,|MC|MA|MC|MQ|CQ|5,故M的轨迹是以定点C,A为焦点的椭圆a,c1,则b2a2c2,M的轨迹方程为1.4平面直角坐标系中,已知两点A(3,1),B(1,3),若点C满足12 (O为原点),其中1,2R,且121,则点C的轨迹是()A直线 B椭圆C圆 D双曲线解析:选A设C(x,y),因为12,所以(x,y)1(3,1)2(1,3),即解得又121,所以1,即x2y5,所以点C的轨迹是直线,故选A.5已知F是抛物线yx2的焦点,P是该抛物线上的动点,则线段PF中点的轨迹方程是_解析:因为抛物线x24y的焦点F(0,1),设线段PF的中点坐标是(x,y),则P(2x,2y1)在抛物线x24y上,所以(2x)24(2y1),化简得x22y1.答案:x22y1练常考题点检验高考能力一、选择题1已知椭圆1(ab0),M为椭圆上一动点,F1为椭圆的左焦点,则线段MF1的中点P的轨迹是()A圆 B椭圆C双曲线 D抛物线解析:选B设椭圆的右焦点是F2,由椭圆定义可得|MF1|MF2|2a2c,所以|PF1|PO|(|MF1|MF2|)ac,所以点P的轨迹是以F1和O为焦点的椭圆2已知A(1,0),B(1,0)两点,过动点M作x轴的垂线,垂足为N,若2,当0时,动点M的轨迹为()A圆 B椭圆 C双曲线 D抛物线解析:选C设M(x,y),则N(x,0),所以2y2,(x1,0)(1x,0)(1x2),所以y2(1x2),即x2y2,变形为x21.又因为0,所以动点M的轨迹为双曲线3已知正方形的四个顶点分别为O(0,0),A(1,0),B(1,1),C(0,1),点D,E分别在线段OC,AB上运动,且ODBE,设AD与OE交于点G,则点G的轨迹方程是()Ayx(1x)(0x1)Bxy(1y)(0y1)Cyx2(0x1)Dy1x2(0x1)解析:选A设D(0,),E(1,1),01,所以线段AD的方程为x1(0x1),线段OE的方程为y(1)x(0x1),联立方程组(为参数),消去参数得点G的轨迹方程为yx(1x)(0x1)4(2017洛阳模拟)设过点P(x,y)的直线分别与x轴的正半轴和y轴的正半轴交于A,B两点,点Q与点P关于y轴对称,O为坐标原点若2,且1,则点P的轨迹方程是()A.x23y21(x0,y0)B.x23y21(x0,y0)C3x2y21(x0,y0)D3x2y21(x0,y0)解析:选A设A(a,0),B(0,b),a0,b0.由2,得(x,yb)2(ax,y),即ax0,b3y0.点Q(x,y),故由1,得(x,y)(a,b)1,即axby1.将ax,b3y代入axby1,得所求的轨迹方程为x23y21(x0,y0)5已知F1,F2分别为椭圆C:1的左,右焦点,点P为椭圆C上的动点,则PF1F2的重心G的轨迹方程为()A.1(y0) B.y21(y0)C.3y21(y0) Dx21(y0)解析:选C依题意知F1(1,0),F2(1,0),设P(x0,y0),G(x,y),则由三角形重心坐标关系可得即代入1得重心G的轨迹方程为3y21(y0)6.如图所示,在平面直角坐标系xOy中,A(1,0),B(1,1),C(0,1),映射f将xOy平面上的点P(x,y)对应到另一个平面直角坐标系uOv上的点P(2xy,x2y2),则当点P沿着折线ABC运动时,在映射f的作用下,动点P的轨迹是()解析:选D当P沿AB运动时,x1,设P(x,y),则(0y1),故y1(0x2,0y1)当P沿BC运动时,y1,则(0x1),所以y1(0x2,1y0),由此可知P的轨迹如D所示,故选D.二、填空题7已知M(2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程是_解析:设P(x,y),MPN为直角三角形,|MP|2|NP|2|MN|2,(x2)2y2(x2)2y216,整理得,x2y24.M,N,P不共线,x2,顶点P的轨迹方程为x2y24(x2)答案:x2y24(x2)8已知定点A(4,0)和圆x2y24上的动点B,动点P(x,y)满足2,则点P的轨迹方程为_解析:设B(x0,y0),由2,得即代入圆方程得(2x4)24y24,即(x2)2y21.答案:(x2)2y219设F1,F2为椭圆1的左、右焦点,A为椭圆上任意一点,过焦点F1向F1AF2的外角平分线作垂线,垂足为D,则点D的轨迹方程是_解析:由题意,延长F1D,F2A并交于点B,易证RtABDRtAF1D,则|F1D|BD|,|F1A|AB|,又O为F1F2的中点,连接OD,则ODF2B,从而可知|DO|F2B|(|AF1|AF2|)2,设点D的坐标为(x,y),则x2y24.答案:x2y2410ABC的顶点A(5,0),B(5,0),ABC的内切圆圆心在直线x3上,则顶点C的轨迹方程是_解析:如图,|AD|AE|8,|BF|BE|2,|CD|CF|,所以|CA|CB|826.根据双曲线定义,所求轨迹是以A,B为焦点,实轴长为6的双曲线的右支,故方程为1(x3)答案:1(x3)三、解答题11已知长为1的线段AB的两个端点A,B分别在x轴、y轴上滑动,P是AB上一点,且,求点P的轨迹C的方程解:设A(x0,0),B(0,y0),P(x,y),则(xx0,y),(x,y0y),因为,所以xx0x,y(y0y),得x0x,y0(1)y.因为|AB|1,即xy(1)2,所以2(1)y2(1)2,化简得y21.所以点P的轨迹方程为y21.12已知椭圆C:1(ab0)的一个焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程解:(1)依题意得,c,e,因此a3,b2a2c24,故椭圆C的标准方程是1.(2)若两切线的斜率均存在,设过点P(x0,y0)的切线方程是yk(xx0)y0,则由得1,即(9k24)x218k(y0kx0)x9(y0kx0)240,18k(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制定质量标准
- 跟骨骨折经皮复位与置钉知识2025
- 中国古代文学作品选辅导
- DeepSeek大模型在医学影像诊断智能识别中的应用方案
- 2025年四川省绵阳市安州八年级中考一模生物试题 (含答案)
- 2025年甘肃省武威市凉州区松树、永昌九年制学校中考三模语文试题(含答案)
- 2025年广东省初中毕业生学业考试英语模拟试题(文字版无答案)
- 后置埋件安装垂直度技术专题
- 2025合同能源管理EMC(EPC)融资及信用保障
- 2025年北京市二手车交易合同
- 企业信访工作责任制实施细则
- 《建筑施工操作工种实训(第二版)》单元6架子工实训
- 干部人事档案目录(样表)
- 大学《土木工程施工技术与组织》题库
- GB/T 5599-1985铁道车辆动力学性能评定和试验鉴定规范
- GB/T 31899-2015纺织品耐候性试验紫外光曝晒
- 压力变送器检定装置计量标准技术报告
- 消毒产品生产企业现场监督检查表
- 六年级英语下册单词和短语默写版广州
- 安全系统工程课程设计
- 物业公司上半年工作总结及下半年工作计划
评论
0/150
提交评论