2019版高考数学第8章立体几何3第3讲空间点、直线、平面之间的位置关系教案理.docx_第1页
2019版高考数学第8章立体几何3第3讲空间点、直线、平面之间的位置关系教案理.docx_第2页
2019版高考数学第8章立体几何3第3讲空间点、直线、平面之间的位置关系教案理.docx_第3页
2019版高考数学第8章立体几何3第3讲空间点、直线、平面之间的位置关系教案理.docx_第4页
2019版高考数学第8章立体几何3第3讲空间点、直线、平面之间的位置关系教案理.docx_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第3讲空间点、直线、平面之间的位置关系1四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内公理2:过不在一条直线上的三点,有且只有一个平面公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线公理4:平行于同一条直线的两条直线互相平行公理2的三个推论:推论1:经过一条直线和直线外一点,有且只有一个平面推论2:经过两条相交直线,有且只有一个平面推论3:经过两条平行直线,有且只有一个平面2空间直线的位置关系(1)位置关系的分类(2)异面直线所成的角定义:设a,b是两条异面直线,经过空间中任一点O作直线aa,bb,把a与b所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角)范围:(3)等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补3空间中直线与平面、平面与平面的位置关系(1)空间中直线和平面的位置关系位置关系图形表示符号表示公共点直线a在平面内a有无数个公共点直线在平面外直线a与平面平行a没有公共点直线a与平面斜交aA有且只有一个公共点直线a与平面垂直a(2)空间中两个平面的位置关系位置关系图形表示符号表示公共点两平面平行没有公共点两平面相交斜交l有一条公共直线垂直且a 判断正误(正确的打“”,错误的打“”)(1)如果两个不重合的平面,有一条公共直线a,就说平面,相交,并记作a.()(2)两个平面,有一个公共点A,就说,相交于过A点的任意一条直线()(3)两个平面ABC与DBC相交于线段BC.()(4)没有公共点的两条直线是异面直线()答案:(1)(2)(3)(4) (教材习题改编)下列命题正确的是()A经过三点确定一个平面B经过一条直线和一个点确定一个平面C四边形确定一个平面D两两相交且不共点的三条直线确定一个平面解析:选D.A选项考查公理2,即三点必须不在同一条直线上,才能确定一个平面;B选项如果点在直线上,则该直线和这个点不能确定一个平面;C选项中的四边形有可能是空间四边形,只有D是正确的 (教材习题改编)已知空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是()A空间四边形B矩形C菱形D正方形解析:选B.如图所示,易证四边形EFGH为平行四边形因为E,F分别为AB,BC的中点,所以EFAC.又FGBD,所以EFG或其补角为AC与BD所成的角而AC与BD所成的角为90,所以EFG90,故四边形EFGH为矩形 (教材习题改编)如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为_解析:连接B1D1,D1C,则B1D1EF,故D1B1C为所求,又B1D1B1CD1C,所以D1B1C60.答案:60 在四棱锥PABCD中,底面ABCD为平行四边形,E,F分别为侧棱PC,PB的中点,则EF与平面PAD的位置关系为_,平面AEF与平面ABCD的交线是_解析:由题易知EFBC,BCAD,所以EFAD,故EF平面PAD,因为EFAD,所以E,F,A,D四点共面,所以AD为平面AEF与平面ABCD的交线答案:平行AD平面的基本性质 典例引领 如图所示,在正方体ABCDA1B1C1D1中,E、F分别是AB和AA1的中点求证:E、C、D1、F四点共面【证明】如图所示,连接CD1、EF、A1B,因为E、F分别是AB和AA1的中点,所以EFA1B且EFA1B.又因为A1D1綊BC,所以四边形A1BCD1是平行四边形,所以A1BCD1,所以EFCD1,所以EF与CD1确定一个平面,所以E、F、C、D1,即E、C、D1、F四点共面若本例条件不变,如何证明“CE,D1F,DA交于一点”?证明:如图,由本例知EFCD1,且EFCD1,所以四边形CD1FE是梯形,所以CE与D1F必相交,设交点为P,则PCE,且PD1F,又CE平面ABCD,且D1F平面A1ADD1,所以P平面ABCD,且P平面A1ADD1.又平面ABCD平面A1ADD1AD,所以PAD,所以CE、D1F、DA三线交于一点共面、共线、共点问题的证明方法(1)证明点或线共面,首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;将所有条件分为两部分,然后分别确定平面,再证两平面重合(2)证明点共线,先由两点确定一条直线,再证其他各点都在这条直线上;直接证明这些点都在同一条特定的直线上 (3)证明线共点,先证其中两条直线交于一点,再证其他直线经过该点提醒点共线、线共点等都是应用公理3,证明点为两平面的公共点,即证明点在交线上 如图,空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BGGCDHHC12.(1)求证:E,F,G,H四点共面;(2)设EG与FH交于点P,求证:P,A,C三点共线证明:(1)因为E,F分别为AB,AD的中点,所以EFBD.在BCD中,所以GHBD,所以EFGH.所以E,F,G,H四点共面(2)因为EGFHP,PEG,EG平面ABC,所以P平面ABC.同理P平面ADC.所以P为平面ABC与平面ADC的公共点又平面ABC平面ADCAC,所以PAC,所以P,A,C三点共线空间两直线的位置关系 典例引领 (构造法)若m,n为两条不重合的直线,为两个不重合的平面,则下列命题中正确的是()若直线m,n都平行于平面,则m,n一定不是相交直线;若直线m,n都垂直于平面,则m,n一定是平行直线;已知平面,互相垂直,且直线m,n也互相垂直,若m,则n;若直线m,n在平面内的射影互相垂直,则mn.ABCD【解析】对于,m与n可能平行,可能相交,也可能异面,错误;对于,由线面垂直的性质定理可知,m与n一定平行,故正确;对于,还有可能n或n与相交,错误;对于,把m,n放入正方体中,如图,取A1B为m,B1C为n,平面ABCD为平面,则m与n在内的射影分别为AB与BC,且ABBC.而m与n所成的角为60,故错误因此选A.【答案】A(1)异面直线的判定方法(2)构造法判断空间两直线的位置关系对于线面、面面平行、垂直的位置关系的判定,可构造长方体或正方体化抽象为直观去判断,可避免因考虑不全面而导致错误,构造法实质上是结合题意构造符合题意的直观模型,然后将问题利用模型直观地作出判断,这样减少了抽象性 通关练习1已知空间三条直线l,m,n,若l与m异面,且l与n异面,则()Am与n异面Bm与n相交Cm与n平行Dm与n异面、相交、平行均有可能解析:选D.在如图所示的长方体中,m,n1与l都异面,但是mn1,所以A,B错误;m,n2与l都异面,且m,n2也异面,所以C错误故选D.2在图中,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有_(填上所有正确答案的序号)解析:图中,直线GHMN;图中,G,H,N三点共面,但M平面GHN,因此直线GH与MN异面;图中,连接MG,GMHN,因此GH与MN共面;图中,G,M,N共面,但H平面GMN,因此GH与MN异面所以在图中GH与MN异面答案:异面直线所成的角(高频考点)从近几年的高考试题来看,异面直线所成的角是高考的热点,题型既有选择题又有填空题,也有解答题,难度为中低档题高考对异面直线所成的角的考查主要有以下两个命题角度:(1)求异面直线所成的角或其三角函数值;(2)由异面直线所成角求其他量 典例引领角度一求异面直线所成的角或其三角函数值 (2017高考全国卷)已知直三棱柱ABCA1B1C1中,ABC120,AB2,BCCC11,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.【解析】如图所示,将直三棱柱ABCA1B1C1补成直四棱柱ABCDA1B1C1D1,连接AD1,B1D1,则AD1BC1,所以B1AD1或其补角为异面直线AB1与BC1所成的角因为ABC120,AB2,BCCC11,所以AB1,AD1.在B1D1C1中,B1C1D160,B1C11,D1C12,所以B1D1,所以cosB1AD1,选择C.【答案】C角度二由异面直线所成角求其他量 四面体ABCD中,E,F分别是AB,CD的中点若BD,AC所成的角为60,且BDAC1,则EF的长为_【解析】如图,取BC的中点O,连接OE,OF,因为OEAC,OFBD,所以OE与OF所成的锐角(或直角)即为AC与BD所成的角,而AC,BD所成角为60,所以EOF60或EOF120.当EOF60时,EFOEOF.当EOF120时,取EF的中点M,则OMEF,EF2EM2.【答案】或 通关练习1如图,正三棱柱ABCA1B1C1的各棱长(包括底面边长)都是2,E,F分别是AB,A1C1的中点,则EF与侧棱C1C所成的角的余弦值是()A.B.C.D2解析:选B.如图,取AC中点G,连接FG,EG,则FGC1C,FGC1C;EGBC,EGBC,故EFG即为EF与C1C所成的角,在RtEFG中,cosEFG.2(2018安徽安庆模拟)正四面体ABCD中,E、F分别为AB、BD的中点,则异面直线AF、CE所成角的余弦值为_解析:取BF的中点G,连接CG,EG,易知EGAF,所以异面直线AF、CE所成的角即为GEC(或其补角)不妨设正四面体棱长为2,易求得CE,EG,CG,由余弦定理得cosGEC,所以异面直线AF、CE所成角的余弦值为.答案: 三个公理的作用公理1是判断一条直线是否在某个平面的依据,公理2及其推论是判断或证明点、线共面的依据,公理3是证明三线共点或三点共线的依据要能够熟练用文字语言、符号语言、图形语言来表示公理 求两条异面直线所成角的大小,一般方法是通过平行移动直线,把异面问题转化为相交直线的夹角,体现了化归思想 易错防范(1)正确理解异面直线“不同在任何一个平面内”的含义,不要理解成“不在同一个平面内”(2)不共线的三点确定一个平面,一定不能丢掉“不共线”的条件(3)两条异面直线所成角的范围是(0,90 1已知异面直线a,b分别在平面,内,且c,那么直线c一定()A与a,b都相交B只能与a,b中的一条相交C至少与a,b中的一条相交D与a,b都平行解析:选C.若c与a,b都不相交,则c与a,b都平行,根据公理4,知ab,与a,b异面矛盾2(2018赣州四校联考)若平面平面,点A,C,B,D,则直线AC直线BD的充要条件是()AABCDBADCBCAB与CD相交DA,B,C,D四点共面解析:选D.因为平面平面,要使直线AC直线BD,则直线AC与BD是共面直线,即A,B,C,D四点必须共面3.如图所示,平面平面l,A,B,ABlD,C,Cl,则平面ABC与平面的交线是()A直线AC B直线ABC直线CD D直线BC解析:选C.由题意知,Dl,l,所以D,又因为DAB,所以D平面ABC,所以点D在平面ABC与平面的交线上又因为C平面ABC,C,所以点C在平面与平面ABC的交线上,所以平面ABC平面CD.4.如图,直三棱柱ABCA1B1C1中,ACB90,AB2,BC1,D为AB的中点,则异面直线CD与A1C1所成的角的大小为()A90B60C45D30解析:选D.因为ACA1C1,所以异面直线CD与A1C1所成的角的平面角为ACD.由ACB90,AB2,BC1,D为AB的中点,可知,CADACD30.5.(2018河北邯郸调研)如图,在三棱锥SABC中,G1,G2分别是SAB和SAC的重心,则直线G1G2与BC的位置关系是()A相交 B平行C异面 D以上都有可能解析:选B.连接SG1并延长交AB于M,连接SG2并延长交AC于N,连接MN.由题意知SM为SAB的中线,且SG1SM,SN为SAC的中线,且SG2SN,所以在SMN中,所以G1G2MN,易知MN是ABC的中位线,所以MNBC,因此可得G1G2BC,即直线G1G2与BC的位置关系是平行故选B.6给出下列四个命题:平面外的一条直线与这个平面最多有一个公共点;若平面内的一条直线a与平面内的一条直线b相交,则与相交;若一条直线和两条平行线都相交,则这三条直线共面;若三条直线两两相交,则这三条直线共面其中真命题的序号是_解析:正确,因为直线在平面外即直线与平面相交或直线平行于平面,所以最多有一个公共点正确,a,b有交点,则两平面有公共点,则两平面相交正确,两平行直线可确定一个平面,又直线与两平行直线的两交点在这两平行直线上,所以过这两交点的直线也在平面内,即三线共面错误,这三条直线可以交于同一点,但不在同一平面内答案:7.如图,正方体ABCDA1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:直线AM与CC1是相交直线;直线AM与BN是平行直线;直线BN与MB1是异面直线;直线AM与DD1是异面直线其中正确的结论为_(注:把你认为正确的结论的序号都填上)解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,故错误答案:8.如图所示,在正三棱柱ABCA1B1C1中,D是AC的中点,AA1AB1,则异面直线AB1与BD所成的角为_解析:如图,取A1C1的中点D1,连接B1D1,因为点D是AC的中点,所以B1D1BD,所以AB1D1即为异面直线AB1与BD所成的角连接AD1,设ABa,则AA1a,所以AB1a,B1D1a,AD1 a.所以,在AB1D1中,由余弦定理得,cos AB1D1,所以AB1D160.答案:609在正方体ABCDA1B1C1D1中,(1)求AC与A1D所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小解:(1)如图,连接B1C,AB1,由ABCDA1B1C1D1是正方体,易知A1DB1C,从而B1C与AC所成的角就是AC与A1D所成的角因为AB1ACB1C,所以B1CA60.即A1D与AC所成的角为60.(2)连接BD,在正方体ABCDA1B1C1D1中,ACBD,ACA1C1.因为E,F分别为AB,AD的中点,所以EFBD,所以EFAC.所以EFA1C1.即A1C1与EF所成的角为90.10.如图,在三棱锥PABC中,PA底面ABC,D是PC的中点已知BAC,AB2,AC2,PA2.求:(1)三棱锥PABC的体积;(2)异面直线BC与AD所成角的余弦值解:(1)SABC222,三棱锥PABC的体积为VSABCPA22.(2)如图,取PB的中点E,连接DE,AE,则EDBC,所以ADE(或其补角)是异面直线BC与AD所成的角在ADE中,DE2,AE,AD2,cosADE.故异面直线BC与AD所成角的余弦值为.1(2018河南百校联盟质检)在棱长为1的正方体ABCDA1B1C1D1中,E,F分别是DD1和AB的中点,平面B1EF交棱AD于点P,则PE()A.B.C.D.解析:选D.过点C1作C1GB1F,交直线CD于点G,过点E作HQC1G,交CD、C1D1于点H、Q,连接B1Q,HF交AD于点P,HQB1F,所以Q、H、F、B1四点共面,易求得HDD1Q,由PDHPAF可得2,则PD,在RtPED中,PE,故选D.2已知三棱锥ABCD中,ABCD,且直线AB与CD所成的角为60,点M,N分别是BC,AD的中点,则直线AB和MN所成的角为_解析:如图,取AC的中点P,连接PM,PN,则PMAB,且PMAB,PNCD,且PNCD,所以MPN为AB与CD所成的角(或其补角),则MPN60或MPN120.因为PMAB,所以PMN是AB与MN所成的角(或其补角)若MPN60,因为ABCD,所以PMPN,则PMN是等边三角形,所以PMN60,即AB与MN所成的角为60.若MPN120,则易知PMN是等腰三角形,所以PMN30,即AB与MN所成的角为30.综上,直线AB和MN所成的角为60或30.答案:60或303(2017高考全国卷)a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:当直线AB与a成60角时,AB与b成30角;当直线AB与a成60角时,AB与b成60角;直线AB与a所成角的最小值为45;直线AB与a所成角的最大值为60;其中正确的是_(填写所有正确结论的编号)解析:由题意知,a,b,AC三条直线两两相互垂直,画出图形如图不妨设图中所示正方体的棱长为1,则AC1,AB,斜边AB以直线AC 为旋转轴旋转,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆以C为坐标原点,以的方向为x轴正方向,的方向为y轴正方向,的方向为z轴正方向建立空间直角坐标系则D(1,0,0),A(0,0,1),直线a的单位方向向量a(0,1,0),|a|1.B点起始坐标为(0,1,0),直线b的单位方向向量b(1,0,0),|b|1.设B点在运动过程中的坐标B(cos ,sin ,0),其中为与的夹角,0,2)那么AB在运动过程中的向量(cos ,sin ,1),|.设直线AB与a所成的夹角为,cos |sin |.故,所以正确,错误设直线AB与b所成的夹角为,则,cos |cos |.当AB与a成60角时,|sin |cos cos.因为cos2sin21,所以|cos |.所以cos |cos |.因为,所以,此时AB与b成60角所以正确,错误答案:4在正方体ABCDA1B1C1D1中,E,F分别为棱AA1、CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有_条解析:法一:如图,在EF上任意取一点M,直线A1D1与M确定一个平面,这个平面与CD有且仅有一个交点N,当M取不同的位置时就

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论