关于初高中数学教学衔接的几方面问题.doc_第1页
关于初高中数学教学衔接的几方面问题.doc_第2页
关于初高中数学教学衔接的几方面问题.doc_第3页
关于初高中数学教学衔接的几方面问题.doc_第4页
关于初高中数学教学衔接的几方面问题.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

羇莇蚃螇聿膀蕿螆膂莆薅螅羁膈蒁螅肄蒄蝿螄膆芇蚅螃芈蒂薁螂羈芅蒇袁肀蒁莃袀膂芃蚂袀袂葿蚈衿肄莂薄袈膇薇蒀袇艿莀蝿袆罿膃蚅袅肁莈薁羄膃膁蒇羄袃莇莃羃羅腿螁羂膈蒅蚇羁芀芈薃羀羀蒃葿罿肂芆螈羈膄蒁蚄肈芆芄薀肇羆蒀蒆蚃肈芃蒂蚂芁薈螀蚁羀莁蚆蚁肃薆薂蚀膅荿蒈虿芇膂螇螈羇莇蚃螇聿膀蕿螆膂莆薅螅羁膈蒁螅肄蒄蝿螄膆芇蚅螃芈蒂薁螂羈芅蒇袁肀蒁莃袀膂芃蚂袀袂葿蚈衿肄莂薄袈膇薇蒀袇艿莀蝿袆罿膃蚅袅肁莈薁羄膃膁蒇羄袃莇莃羃羅腿螁羂膈蒅蚇羁芀芈薃羀羀蒃葿罿肂芆螈羈膄蒁蚄肈芆芄薀肇羆蒀蒆蚃肈芃蒂蚂芁薈螀蚁羀莁蚆蚁肃薆薂蚀膅荿蒈虿芇膂螇螈羇莇蚃螇聿膀蕿螆膂莆薅螅羁膈蒁螅肄蒄蝿螄膆芇蚅螃芈蒂薁螂羈芅蒇袁肀蒁莃袀膂芃蚂袀袂葿蚈衿肄莂薄袈膇薇蒀袇艿莀蝿袆罿膃蚅袅肁莈薁羄膃膁蒇羄袃莇莃羃羅腿螁羂膈蒅蚇羁芀芈薃羀羀蒃葿罿肂芆螈羈膄蒁蚄肈芆芄薀肇羆蒀蒆蚃肈芃蒂蚂芁薈螀蚁羀莁蚆蚁肃薆薂蚀膅荿蒈虿芇膂螇螈羇莇蚃螇聿膀蕿螆膂莆薅螅羁膈蒁螅肄蒄蝿螄膆芇蚅螃芈蒂薁螂羈芅蒇袁肀蒁莃 关于初高中数学教学衔接的几方面问题海盐教研室 沈顺良一 做好初高中数学教学衔接工作的必要性。 1、高一在学生高中数学学习阶段中的作用2、高一阶段数学的教与学中出现的问题:“学生感到难学,教师感到难教”, 高一数学相对于初中数学而言, 逻辑推理强,抽象程度高,知识难度大。初中毕业生以较高的数学成绩升入高中后,不适应高中数学教学, 学习成绩大幅度下降,出现了严重的两极分化,过去的尖子生可能变为学习后进生, 甚至,少数学生对学习失去了信心。3、近年来的变化:初中数学教学内容作了较大程度的压缩、上调,中考难度的下调、新课程的实验和新教材的教学使高中数学在教材内容以及高考中都对学生的能力提出了更高的要求,使得原来的矛盾更加突出。二、关于初高中数学成绩分化原因的分析1教材的变化:内容多并且抽象、逻辑性强首先,初中教材偏重于实数集内的运算,缺少对概念的严格定义或对概念的定义不全,如函数的定义,三角函数的定义就是如此;对不少数学定理没有严格论证,或直接用公理形式给出而回避了证明,比如不等式的许多性质就是这样处理的;教材坡度较缓,直观性强,对每一个概念都配备了足够的例题和习题。高中教材从知识内容上整体数量较初中剧增;在知识的呈现、过程和联系上注重逻辑性,在数学语言在抽象程度上发生了突变,高一教材开始就是集合、映射、函数定义及相关证明、逻辑关系等,概念多而抽象,符号多,定义、定理严格、论证严谨逻辑性强,教材叙述比较严谨、规范,抽象思维明显提高,知识难度加大,且习题类型多,解题技巧灵活多变,计算繁冗复杂,体现了“起点高、难度大、容量多”的特点。其次,近几年教材内容的调整,虽然初高中教材都降低了难度,但相比之下,初中降低的幅度大,而且有中考试卷的难度作保障;而高中由于受高考的限制,教师都不敢降低难度,造成了高中数学实际难度并没有降低。因此,从一定意义上讲,调整后的教材不仅没有缩小初高中教材内容的难度差距,反而加大了。如现行初中数学教材在内容上进行了较大幅度的调整,难度、深度和广度大大降低了,那些在高中学习中经常应用到的知识,如:对数、二次不等式、解斜三角形、分数指数幂等内容,都转移到高一阶段补充学习。这样初中教材就体现了“浅、少、易”的特点,但却加重了高一数学的份量。另外,初中数学教材中每一新知识的引入往往与学生日常生活实际很贴近,比较形象,并遵循从感性认识上升到理性认识的规律,学生一般都容易理解、接受和掌握。 2升学考试要求不同下的教法变化在初中,由于内容少,课容量小,进度慢,对重难点内容均有充足时间反复强调,对各类习题的解法,教师有时间进行举例示范,学生也有足够时间进行巩固。老师每讲完一道例题后,都要布置相应的练习,学生到黑板表演的机会相当多,为了提高合格率,不少初中教师把题型分类,让学生强记解题方法和步骤,重点题目反复做过多次。如江苏洋思的先学后教。而高中教师在授课时要求内容容量大,从概念的发生发展、理解、灵活运用及蕴含其中的数学思想和方法,注重理解和举一反三、知识和能力并重。从升学考看,在初中,教师讲得细,类型归纳得全,练得熟,考试时,学生只要记准概念、公式及教师所讲例题类型,一般均可对号入座取得好成绩,取得中考好成绩。而高考要求则不同,有的高中教师往往用高三复习时应达到的类型和难度来对待高一教学,造成了轻过程、轻概念理解重题量的情形,造成初、高中教师教学方法上的巨大差异,中间又缺乏过渡过程,至使高中新生普遍适应不了高中教师的教学方法。3学习方法的变化学生在初中三年已形成了固定的学习方法和学习习惯。由于由于初中学生的学习负担较重,他们上课注意听讲,缺乏积极思维,遇到新的问题不是自主分析思考,而是希望老师讲解整个解题过程;不会自我科学地安排时间,缺乏自学、看书的能力,而课后,也不看书,接按老师上课讲的例题方法套着解题,碰到问题寄希望于老师的讲解,依赖性较强。虽然不少高一教师介绍并强调了高中数学的学法调整,但由于原有学习方法已成习惯,有的同学特别是女生不敢对自己的学习方法进行调整,高一阶段课目多负担重,突出的就是不能真正理解知识、不会灵活运用,高一同学们普遍反映数学课能听懂不会做题,或者说能做作业但考试不会,在数学上花了最多的时间去做练习,但收效不大。4、学生学习能力的脱节。从学生的数学能力看,初中的逻辑思维能力只限于平几证明,知识逻辑关系的联系较少,运算要求降得较低,分析解决问题的能力基本得不到培养,至于立体几何,也只能依靠要求较低的零散的立几知识来呈现,想象能力较低。从数学思想方法看,初中数学对其要求不高,如高中所重点要求的四大数学思想要求很低,象每年中考和期末考暴露出数学形结合意识较差,(例中考每年的二次函数容易题,初二期末考试题) 相对来说,高中对数学能力和数学思想的运用要求比较高,如高一集合部分的数学思想要求高,如韦恩图法的借助、数轴的帮助、函数图象的使用等都要求学生有较强的数形结合意识,但对不少学生来说只能是听得懂做不出。另外,与初中生相比,多数高中生表现为上课不爱举手发言,课内讨论气氛不够热烈,有时点名回答问题也不够直爽,与教师的日常交往渐有隔阂感,即使同学之间朝夕相处,也不大愿意公开自己的心事。心理学上把这种青年初期最显著的心理特征称为闭锁性。高一学生心理上产生的闭锁性,给教学带来很大的障碍,表现在学生课堂上启而不发,呼而不应。 三、搞好初高中衔接所采取的主要措施 1、教师明确要求:高一数学教师应在开学初,要通过听介绍、摸底测验、与学生座谈等方式了解学生掌握知识的程度和学生的学习习惯,摸清初中知识体系、初中教师授课特点、学生认知结构;同时要立足于高中大纲和教材,特别要分析相对于初中数学来说高一第一学期内容的特点,高一数学中有许多难理解和掌握的知识点,如集合、映射、函数等,从内容、结构、过程、方法、思想等角度考虑学生的困难。重视新旧知识的联系与区别,建立知识网络。初高中数学有很多衔接知识点,如函数概念、平面几何与立体几何相关知识等,到高中,它们有的加深了,有的研究范围扩大了,有些在初中成立的结论到高中可能不成立。因此,在讲授新知识时,我们有意引导学生联系旧知识,复习和区别旧知识,特别注重对那些易错易混的知识加以分析、比较和区别。这样可达到温故知新、温故而探新的效果。同时应该明确高考对高一内容的相应要求,着重应该是对知识的真正理解、基本方法思想等,而不是单纯的题型甚至数量。 ()找准衔接点。数学知识间的联系非常紧密,运用联系的观点提示新知,使学生不仅能顺利接受新知,而且能够认识到新、旧知识间的联系与区别,使知识条理化、系统化。高一数学知识大多是在初中基础上发展而来的,因而从初中知识(衔接点)出发,提出新问题,可以研究得到新知识,比如函数的定义的讲解,可从初中函数定义(衔接点)出发,结合初中所学具体函数加以回顾,再运用映射的观念给这些函数以新的解释,在些基础上对函数重新定义,使新定义的出现水到渠成,易于理解,同时比较新、旧定义,发现原有定义的局限性,又使学生认识得以深化,新知得以掌握和巩固。()做好“衔接点”教材的处理工作。如,在讲解一元二次不等式解法时,应先详细复习二次函数的有关内容,然后疳二次函数、二次不等式、二次方程联系起来进行解决,而一元二次不等式又是一种重要的工具,在代数、三角、解析几何中几乎处处可见,另外,二次函数不但是初中的重要内容,也是高考的“龙头”函数,弄清二次函数的有关内容,对以后的学习指、对函数及三角函数图象的研究到“半两拨千斤”的功效。另一方面,对于学生在初中数学中已经学习过的概念、图形,要作一些整理的工作,使之系统化、条理化。在教学过程中,要充分利用学生头脑中已有的概念和形象(衔接点),无须作为新知识。重点处理,以便对学生造成不必要的负担,而对于在提法上予以突出。例如函数的概念,在初中组给出了用“变量”描述的经验型的定义,而在高中则从“映射”的高度给出一个理论型的定义。但后者并不摈弃前者,而是把前者作为何供对比,有待深入认识的对象。2、搞好入学教学通过入学教育提高学生对初高中衔接重要性的认识,增强紧迫感,消除松懈情绪,初步了解高中数学学习的特点,为其它措施的落实奠定基础,这里主要做好四项工作:一是给学生讲清高一数学在整个中学数学中所占的位置和作用;二是结合实例,采取与初中对比的方法,给学生讲清高中数学内容体系特点和课堂教学特点;三是结合实例给学生讲明初高中数学在学法上存在的本质区别,并向学生介绍一些优秀学法,指出注意事项;四是请高年级学生谈体会讲感受,引导学生少走弯路,尽快适应高中学习。我们在高一教学中,注意运用情感和成功原理,调动学生学习热情,培养学习数学兴趣。学生学不好数学,少责怪学生,要多找自己的原因。要深入学生当中,从各方面了解关心他们,特别是差生,帮助他们解决思想、学习及生活上存在的问题。重视培养学生正确对待困难和挫折的良好心理素质。由于高中数学的特点,决定了高一学生在学习中的困难大挫折多。为此,我们在教学中注意培养学生正确对待困难和挫折的良好心理素质,使他们善于在失败面前,能冷静地总结教训,振作精神,主动调整自己的学习,并努力争取今后的胜利。平时多注意观察学生情绪变化,开展心理咨询,做好个别学生思想工作。通过建立多渠道的反馈途径,及时收集学生对知识的掌握情况和对教学的意见,为及时矫上学生的错误,调整教学,提高教学针对性提供依据。知识落实的思路为:以落实“三基”为中心,实行分层落实,做到提优补差。主要措施是:平时练习层次化,单元结束考查制度化,做到章节会,单元清。3、培养学生学法习惯对高一新生来讲确实困难较大。因此,在教学中,应从高一学生实际出发,采取“低起点、小梯度、多训练、分层次”的方法,将教学目标分解成若干递进层次逐层落实。在速度上,放慢起始进度,逐步加快教学节奏。在知识导入上,多由实例和已知引入。在知识落实上,先落实“死”课本,后变通延伸用活课本。在难点知识讲解上,从学生理解和掌握的实际出发,对教材作必要处理和知识铺垫,注意教学内容和方法的衔接。重视培养学生自我反思自我总结的良好习惯,提高学习的自觉性。高中数学概括性强,题目灵活多变,只靠课上听懂是不够的,需要课后进行认真消化,认真总结归纳。这就要求学生应具备善于自我反思和自我总结的能力。为此,我们在教学中,抓住时机积极培养。在单元结束时,帮助学生进行自我章节小结,在解题后,积极引导学生反思:思解题思路和步骤,思一题多解和一题多变,思解题方法和解题规律的总结。由此培养学生善于进行自我反思的习惯,扩大知识和方法的应用范围,提高学习效率。高中数学教学要把对学生加强学法指导作为教学的重要任务之一。指导以培养学习能力为重点,狠抓学习基本环节,如“怎样预习”、“怎样听课”等等。具体措施有三:一是寓学法指导于知识讲解、作业讲评、试卷分析等教学活动之中,这种形式贴近学生学习实际,易被学生接受;二是举办系列讲座,介绍学习方法;三是定期进行学法交流,同学间互相取长补短,共同提高。良好的学习方法和习惯,不但是高中阶段学习上的需要,还会使学生受益终生。但好的学习方法和习惯,一方面需教师的指导,另一方面也靠老师的强求。教师应向学生介绍高中数学特点,进行学习方法的专题讲座,帮助学生制订学习计划。这里,重点是会听课和合理安排时间。听课时要动脑、动笔、动口,参与知识的形成过程,而不是只记结论。教师应有针对性地向学生推荐课外辅导书,以扩大知识面。提倡学生进行章节总结,把知识串成线,做到书由厚读薄,又由薄变厚。期中、期末都要召开学习方法交流会,让好的学习方法成为全体学生的共同财富。日常教学中必须加强学法指导如课前布置预习提纲,点明预习需要做哪些工作,达到什么样的要求,让他们掌握将来如何学习;听课时怎样处理好听讲与记笔记的关系;笔记应该记些什么,怎样记;课堂上严格要求,让他们学会支配时间;每节课有结束语,每单元有知识小结,了解与掌握课后复习应遵循什么样的顺序和原则;让他们学会摘录、整理和提炼:怎样在练习的过程中汲取经验教训;组织专题讨论,让学生开阔思路,加深对知识的立体化理解;开展学生小论文评比,让学生自觉参与知识理论的探索,解法的总结,问题的引申、类比和拓广;组织学习方法的座谈交流,使交流更具启发性和亲切感。作业安排上分三个层次:当堂课的巩固训练题,拔尖提高题及预习思考题。为了减轻学生的课业负担,必须做到:习题要精选;题型要综合;形式要灵活。 (1 )学习的主动性。许多同学进入高中后还象初中那样有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动性,表现在不订计划,坐等上课,课前不作预习,对老师要上课的内容不了解,上课忙于记笔记,忽略了真正听课的任务,顾此失彼,被动学习。(2 )学习的条理性。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵外延,分析重点难点,突出思想方法,而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是忙于赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背,也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。(3 )忽视基础。有些 自我感觉良好 的学生,常轻视基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的 水平 ,好高骛远,重 量 轻 质 ,陷入题海,到正规作业或考试中不是演算出错就是中途 卡壳 。(4 )学生在练习、作业上的不良习惯。主要有对答案、不相信自己的结论,缺乏对问题解决的信心和决心;讨论问题不独立思考,养成一种依赖心理素质;慢腾腾作业,不讲速度,训练不出思维的敏捷性;心思不集中,作业、练习效率不高。4优化课堂教学环节,搞好初高中衔接 (1)抓知识实质的理解:高中数学较初中抽象性强,应用灵活,数学的一个概念、定义、公式、法则、定理等都是数学的基础知识,这些知识的形成过程容易被忽视。事实上,这些知识的形成过程正是数学能力的培养过程。一个定理的证明,往往是新知识的发现过程,在掌握知识的过程中,就培养了数学能力的发展。因此,要改变重结论轻过程的教学方法,要把知识形成过程看作是数学能力培养的过程。这就要求学生对知识理解要透,不能只停留在对知识结论的死记硬套上。重视展示知识的形成过程和方法探索过程,培养学生创造能力。这就要求教师应向学生展示新知识和新解法的产生背景、形成和探索过程,不仅使学生掌握知识和方法的本质,提高应用的灵活性;要重视新旧知识的联系与区别,建立知识网络。初高中数学有很多衔接点,如函数概念、平面几何与立体几何相关知识等,到高中,它们有的加深了,有的研究范围扩大了,有些在初中成立的结论到高中可能不成立。因此,在讲授新知识时,我们有意引导学生联系旧知识,区别新旧知识,特别注重对那些易错易混的知识加以分析、比较和区别。(2)注重练习反馈,抓问题暴露。在数学课堂中通过提问、板演、问题讨论等机会多了解学生存在的问题,对于那些典型问题,带有普遍性的问题都必须及时解决,不能把问题的结症遗留下来,甚至沉淀下来。数学课的课堂练习时间每节课大约占1 / 4 - 1 / 3 ,有时超过1 / 3 ,这是对数学知识记忆、理解、掌握的重要手段,坚持不懈,这既是一种速度训练,又是能力的检测。学生做题是无心的,而教师所寻找的例题是有心的,哪些知识需要补救、巩固、提高,哪些知识、能力需要培养、加强应用。 (3)注意教学方法的选择使用:一是处理教学内容时多举实例,增强教材趣味性、直观性;多用教具演示,借助多媒体辅助教学,帮助学生逐步增强空间想象能力;加强定义、概念之间的类比,逐步提高学生对教材理解的深刻性;对易混淆的概念(定理)对比学习;对公式、定理各字母的含义、适用范围、特例等作补充说明等来帮助学习,这些学习方法必须在教师的指导和帮助下,由学生亲身实践后,才能成为学生自身的学习方法和习惯,对于知识的结构性、整体性和问题的归类方法的选用要为学生作好充分的引导。如为了说明与的区别,可以类比空箱子放入空房子,房子不空。把个人与集体,小集体与大集体之间关系的相对性,联系到数学中元素与集合,集合与集合之间关系的相对性,可以使抽象的教材“活”起来,同时使学生逐步接受科学性和逻辑性都较强的高中教材。二是在课堂教学中多让学生参与,让学生充分的时间思考,给学生讨论发言的机会,加之教师适时点拔,让学生多感受多体验,使学生想学、能学、会学。(4)注重解题思路的分析,加强数学思想的渗透指导作用。 5培养学生的自学能力培养自学能力不单是能力本身是否存在的问题,更主要的是废除传统的“注入式”教学,是提高教学质量的主要途径。数学教材是教师传授知识的主要依据,是学生获得知识,走培养能力的主要源泉。而事实上,由于时间的局限,老师讲课的内容是有很的,无限的知识探索和掌握还是靠自己,从这个意义上讲,培养自学能力比传授知识更重要。另外,在教学中培养自学能力要注重“导”与“学”,“导”就是教师在自学中起好引导、指导作用,开始教师列出自学指导提纲,引导学生阅读教材,怎样读,怎样疑点和难点,怎样归纳,教师逐步放手,学生逐步提高;“学”就是在阅读教材的基础上,使学生课前做到心中有数,上课着问题专心听讲,课后通过复习,落实内容才做习题,作业错误自行做好“红笔”订正,这样能使学生开动脑筋,提高成绩,而学生有了自学习惯和自学能力,就能变被动为主动学习。培养学生能力,是初高中数学衔接非常重要的环节,主要有: 1、培养学生独立学习的能力 在高一年级开始,可选择适当内容在课内自学。教师根据教材内容拟定自学提纲基本内容的归纳、公式定理的推导证明、数学中研究问题的思维方法等。学生自学后由教师进行归纳总结,并给以自学方法的指导,以后逐步放手让学生自拟提纲自学,并向学生提出预习及进行章节小结的要求。学生养成自学的习惯后,就能使他们的学习始终处于积极主动的状态,这必将大大提高教和学的效率。 2、培养分析问题和解决问题的能力 从高一开始,应要求学生把每条定理、每道例题都当作习题,认真地重证、重解,并适当加些批注,特别是通过对典型例题的讲解分析,最后要抽象出解决这类问题的数学思想和方法,并做好书面的解题后的反思总结出解题的一般规律和特殊规律,以便推广和灵活运用。另外,老师要鼓励学生独立解题,因为努力求解过程,也是培养分析问题和解决问题的能力过程。 3、培养学生的准确计算能力 在有些学生,特别是平时显得比较聪明的学生看来,计算是否准确只是个细心问题。其实,能准确进行计算是一项不容忽视的能力,这要靠平时认真坚持和严格训练才能养成。几乎每一个数学问题的解决,都离不开计算,因此,要使学生明白这一点并在平日里从严要求。 4、培养提出问题的能力 可训练学生从下列两种角度提出问题:其一是从逻辑角度。例如:一个真命题的逆命题是否也真?一个命题的前提部分若由好几条组成,那么每一条对结论有何影响?若把其中某条换成别的条件又会有什么结果?某个特殊命题是否是某个一般问题的特例?其二是从学科或章节内容间的联系上找问题。如:某个代数中的定理有什么几何意义?有什么物理意义?等等。 高中数学教学中要突出四大能力,即运算能力,空间想象能力,逻辑推理能力和分析问题解决问题的能力。要渗透四大数学思想方法,即数形结合,函数与方程,等价与变换,划分与讨论。这些虽然在初中教学中有所体现,但在高中教学中才能充分反映出来。这些能力、思想方法也正是高考命题的要求。我们即将升入高中的同学应该充分认识到这

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论