国标本小学数学六年级(下册)教材分析.doc_第1页
国标本小学数学六年级(下册)教材分析.doc_第2页
国标本小学数学六年级(下册)教材分析.doc_第3页
国标本小学数学六年级(下册)教材分析.doc_第4页
国标本小学数学六年级(下册)教材分析.doc_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

螂羃腿蒆蚈肂芁蚁羇肁莃蒄袃肀薆蚀衿肀芅薃螅聿莈螈蚁肈蒀薁羀肇膀螆袆膆节蕿螂膅莄螅蚈膄蒇薇肆膄芆莀羂膃荿蚆袈膂蒁葿螄膁膁蚄蚀膀芃蒇罿艿莅蚂袅艿蒇蒅螁芈膇蚁蚇芇荿蒃肅芆蒂蝿羁芅薄薂袇芄芄螇螃袁莆薀虿袀蒈螆羈罿膈薈袄羈芀螄螀羇蒃薇螆羆薅葿肄羆芅蚅羀羅莇蒈袆羄葿蚃螂羃腿蒆蚈肂芁蚁羇肁莃蒄袃肀薆蚀衿肀芅薃螅聿莈螈蚁肈蒀薁羀肇膀螆袆膆节蕿螂膅莄螅蚈膄蒇薇肆膄芆莀羂膃荿蚆袈膂蒁葿螄膁膁蚄蚀膀芃蒇罿艿莅蚂袅艿蒇蒅螁芈膇蚁蚇芇荿蒃肅芆蒂蝿羁芅薄薂袇芄芄螇螃袁莆薀虿袀蒈螆羈罿膈薈袄羈芀螄螀羇蒃薇螆羆薅葿肄羆芅蚅羀羅莇蒈袆羄葿蚃螂羃腿蒆蚈肂芁蚁羇肁莃蒄袃肀薆蚀衿肀芅薃螅聿莈螈蚁肈蒀薁羀肇膀螆袆膆节蕿螂膅莄螅蚈膄蒇薇肆膄芆莀羂膃荿蚆袈膂蒁葿螄膁膁蚄蚀膀芃蒇罿艿莅蚂袅艿蒇蒅螁芈膇蚁蚇芇荿蒃肅芆蒂蝿羁芅薄薂袇芄芄螇螃袁莆薀虿袀蒈螆羈罿膈薈袄羈芀螄螀羇蒃薇螆羆薅葿肄羆芅蚅羀羅莇蒈袆羄葿蚃螂羃腿蒆蚈肂芁蚁羇肁莃蒄袃肀薆蚀衿肀芅薃螅聿莈螈蚁肈蒀薁羀肇膀螆袆膆节 国标本小学数学六年级(下册)教材分析大港中心小学 陈金顺六年级(下册)的教学内容分成两部分编排,在前七个单元里教学新知识,全面完成标准规定的第二学段的教学内容和具体目标;在第八单元有重点地系统复习小学阶段教学的主要知识。 “数与代数”领域教学百分数的应用,比例的有关知识,成正比例和成反比例的量,解决问题的策略。教材适当加强了正比例关系图像的教学,不再安排解答正比例或反比例的应用题。 “空间与图形”领域教学圆柱和圆锥,图形的放大或缩小,确定位置等内容。图形的放大和缩小是小学数学新增加的教学内容,让学生初步了解图形可以按一定的比例发生大小变换。确定位置也是新增的教学内容,在初步认识方向的基础上,用“北偏东几度”“南偏西几度”的形式量化描述物体所在的具体方向,还要联系比例尺的知识,用“距离多少”的形式描述物体所在的位置。“统计与概率”领域先在认识圆和能够应用百分数的基础上教学扇形统计图,再教学众数和中位数。 “实践和综合应用”领域编排了三次实践活动。第一次是利用圆柱的体积知识测量形状不规则物体的体积,以及应用铁块的质量与体积比值一定的规律推算铁块的体积。第二次是结合图形的放大或缩小,研究图形的面积变化与边长变化的关系。第三次是使用工具或应用步测的方法,测量相隔较远的两点之间的距离。总复习的内容也按四个领域编排。根据标准里具体目标的设计分类,在“数与代数”领域里把内容分成数的运算、数的认识、式与方程、正比例与反比例四个部分进行复习。把解决实际问题纳入数的运算、式与方程两个部分,突出数学知识的实际应用。“空间与图形”领域里的内容分图形的认识、图形的变换、图形的位置三个部分进行复习。小学阶段的测量主要是线段的长度、图形的面积、物体的体积,教材把测量的内容与图形的认识有机结合起来,能提高复习的效率。“统计与概率”领域的内容分统计、可能性两个部分进行复习。在总复习里还安排了上述三个领域内容的综合应用,分别研究住房面积的变化、旅游费用的预算、调查周围的绿地面积、在生活中如何节约用水。第一单元百分数的应用教材分析本单元继续教学百分数的应用,包括四个内容,依次是求一个数比另一个数多(或少)百分之几的实际问题,根据已知的税率求应缴纳的税款以及根据已知的利率求应得的利息,与折扣有关的实际问题,较复杂的已知一个数的百分之几是多少,求这个数的实际问题。 1以现实问题中百分数的意义为突破口,通过推理分析数量关系,探索算法。解答例1的关键是理解问题的具体含义,教材借助直观的线段图,让学生思考“实际造林比原计划多百分之几”应该怎样理解。明确这个问题是求实际造林面积超过原计划的公顷数相当于计划造林公顷数的百分之几,从而产生先算出实际造林比原计划多4公顷,再求4公顷是计划造林面积16公顷的百分之几这样的思路。练习一第5题里,第(1)、(2)题的条件相同,问题不同,第(2)、(3)题的条件不同,问题也不同。通过解题与比较,能使学生更正确地理解“是百分之几”与“高百分之几”的含义。2把求一个数的几分之几是多少的经验,向求一个数的百分之几是多少迁移。例2结合纳税教学求一个数的百分之几是多少的问题,先找到数学问题“60万元的5%是多少”,然后把求一个数的几分之几是多少的经验迁移过来,得到“求一个数的百分之几是多少,也用乘法计算”,于是列出算式605%。例3计算利息,应用求一个数的百分之几的方法解决稍复杂的实际问题。由于多数学生缺少这方面的生活经验,因此教材在底注中解释了本金、利息、利率的含义,并给出了计算利息的方法:利息=本金利率时间。要结合例题里的表格,让学生知道利息和本金、年利率、存期有关,一般情况下,本金越多,存期越长,年利率越高,到期后获得的利息就多。还要让学生知道,存期一年,到期可得的利息是本金的2.25%;存期二年,每年的利息是本金的2.70%这样,学生就能理解计算利息公式里的数量关系。3列方程解决已知一个数的百分之几是多少,求这个数的实际问题。例4教学与折扣有关的问题,也是百分数的实际应用。教材先对“打折”作了具体的解释,让学生明白几折就是百分之几十,知道八折就是80%,从而把打折的实际问题与百分数的应用联系起来。“原价和实际售价有什么关系”是这道例题的教学重点,要从“原价打八折出售”得出“原价80%=实际售价”。这个数量关系能起两点作用,一是进一步理解打折扣的含义:图书按八折出售,实际售价只是原价的80%。二是形成求趣味数学原价的解题思路,在数量关系式里已知积与一个因数,求另一个因数,可以列方程解答。本册教材里,已知一个数的百分之几是多少,求这个数的问题都列方程解答,充分利用百分数的意义,加强对百分数乘法的理解,避免人为地把实际问题分类型,体现了各种百分数问题的内在联系。教学例4、例5、例6以及练习里的内容,要更新观念,改变习惯了的教学方法。首先是不要求学生识别分数乘法与分数除法两类不同的问题,尤其不要机械套用已知单位“1”用乘法,单位“1”未知用除法这些所谓的规律。过去这样教的解题效果虽好,但严重制约了学生的思维,把分析数量关系的过程变成了依据个别词语的简单判断。改进教法要加强对分数、百分数意义的理解,充分利用求一个数的几分之几是多少这个数量关系,合理选择列算式还是列方程解题。其次,不必进行有关分率与百分率的联想训练。如从用去25%想到还剩(1-25%);从第一天看了全书的1/5,第二天看了全书的1/6想到两天看了全书的1/5+1/6,这些联想是为列除法算式服务的。要引导学生充分挖掘和利用实际问题里的相并、相差等最基本的数量关系,作为列方程或列算式的依据,让小学与初中的教学相衔接,为学生的后继学习打下良好的基础。第二单元圆柱和圆锥教材分析圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体。全单元编排五道例题、四个练习,把内容分成四段教学。依次是圆柱与圆锥的特征、圆柱的表面积、圆柱的体积、圆锥的体积。1通过观察、操作,认识圆柱和圆锥。例1的图片里,有些物体是圆柱形的,有些物体的一部分是圆柱形的,也有些物体不是圆柱形的。而且,在圆柱形的物体中,有的高,有的矮,有的厚,有的薄,这就为认识圆柱提供了丰富的具体对象。要引导学生进行观察、交流,同时教师要给予必要的讲解。让学生仔细观察圆柱,发现圆柱的上、下两个面是相同的圆形,圆柱的侧面是曲面,而且圆柱上下是一样粗的。前两点学生容易注意到,第三点往往会疏忽,在交流的时候,要引起学生的注意。在“练一练”里,教材安排了上、下两个底面大小不同的杯子和木桶,两个底面虽然相同但两底之间粗细不同的腰鼓,还有底面是正六边形的盒子,让学生指出这些物体都不是圆柱形,从而加强对圆柱特征的体验。例题引导学生把认识圆柱的学习方法迁移到认识圆锥上来,在观察圆锥形物体的基础上抽象出圆锥的几何图形,在交流圆锥特征的过程中认识圆锥的顶点、底面和侧面。在圆锥的几何图形上用虚线画出顶点到底面圆心的线段,帮助学生理解圆锥高的含义。练习五的设计重视空间观念的培养,都是动手操作的习题。第2题从正面、上面、侧面观察圆柱和圆锥,通过立体图形与平面图形、曲面与平面的相应转化,加强对圆柱、圆锥特征的体验,发展空间观念。第3题把长方形绕它的一条边旋转形成圆柱,把直角三角形绕它的一条直角边旋转形成圆锥,把半圆绕它的直径旋转形成球,让学生在动态中感受这些几何体。2在现实的情境中,探索圆柱表面积的计算方法。教材先在例2里教学圆柱的侧面积,再在例3里教学圆柱的表面积。例2计算圆柱形罐头盒侧面的商标纸的面积,这个素材容易引发把商标纸剪开后看看、算算等教学活动。教材指导学生“沿着接缝剪开”,经历展开商标纸的活动,体会圆柱的侧面展开图是一个长方形。探索圆柱侧面积的计算方法,要研究展开后长方形的长、宽与圆柱的关系,让学生在侧面展开成长方形和长方形卷成侧面的活动中,发现长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高。从长方形的面积计算公式,推导出圆柱侧面积的计算方法。例3教学圆柱的表面积。教材先让学生思考底面直径2厘米、高2厘米的圆柱侧面沿高展开,得到的长方形长和宽各是多少厘米,两个底面是多大的圆,再在方格纸上画出这个圆柱的展开图。思考的过程能帮助正确地画图,画图则有助于体会表面积的含义。练习六应用圆柱侧面积、表面积的知识解决实际问题。第1、2题的练习重点是把实际问题抽象成数学问题。第3题有整理知识的作用。第4-9题是灵活应用圆柱侧面积、表面积的知识,要联系实际判断所求问题需不需要计算底面积,要算几个底面积。3通过猜想验证探索圆柱、圆锥的体积公式。例4教学圆柱的体积计算,分两步进行。第一步认识底面积相等、高也相等(以下简称等底等高)的长方体、正方体和圆柱,第二步推导圆柱的体积公式。安排第一步教学要达到三个目的,一是认识等底等高的含义,便于判断圆柱可以转化成与它等底等高的长方体。二是从长方体与正方体等底等高,体积也相等的事实,引发等底等高的圆柱与长方体的体积也相等的猜想,形成把圆柱转化成长方体的活动心向。三是复习长方体、正方体的体积公式,圆柱的体积最终也要这样计算。这些目的要在思考和讨论例题中第(1)、(2)两个问题时实现。第二步的教学主要设计了三个活动。第一,在形成把圆柱转化成长方体的探索思路后,展示转化活动。学生可以看教材里的插图,也可以通过操作学具,明确转化的方法与过程。第二,让学生明白,把圆柱的底面平均分成16份,切开后拼成的是一个近似于长方体的物体。如果圆柱的底面平均分的份数越多,切开后拼成的物体越接近长方体,渗透极限思想,发展想像能力。第三,让学生思考拼成的长方体与原来圆柱的关系,体会圆柱转化成长方体,体积不变,底面积不变、高也没有变。用“底面积乘高”算得的既是转化成的长方体的体积,也是原来圆柱的体积。这是形成圆柱体积公式的推理活动。例5教学圆锥的体积公式。教材首先出示等底等高的圆柱和圆锥,让学生直观估计圆锥的体积是圆柱的几分之几。进行这个估计是形成一个猜想,如果等底等高的圆柱和圆锥的体积之间存在确定的倍数关系,就可以利用圆柱的体积计算圆锥的体积。然后验证估计,探索等底等高的圆柱和圆锥的体积关系。例题把验证活动分三步进行。第一步指导学生选择实验器具。第二步指导倒沙活动。第三步进行推理,把实验的结论用数学式子表示,最终得出圆锥的体积公式。第三单元比例教材分析图形的放大或缩小是认识比例的现实素材,比例能揭示图形放大或缩小的数学含义,而且解决图形放大或缩小、比例尺的实际问题要应用比例的知识,把不同领域的教学内容有机融合是教材的一大特点。1联系实际,建立图形放大、缩小的概念。数学里图形放大或缩小的含义与生活中的放大、缩小经常是不同的。生活中会把图形由小变大视作放大,由大变小视为缩小。数学里的图形放大或缩小,它的每条边都按一定的比例变化,即每条边的长度都放大到原来的几倍或缩小到原来的几分之一。例1教学图形放大、缩小的含义,先观察在电脑上放大长方形的现象,分别研究长方形放大后与放大前长、宽的关系。然后联系长方形放大揭示图形放大的数学含义。教材依次讲了三句话:首先是“长方形的每条边放大到原来的2倍”,这是对长放大到原来的2倍,宽也放大到原来2倍的概括。然后是“放大后的长方形与原来长方形对应边长的比是21”,用比描述图形放大时边的长度变化。这里把放大前、后两个长方形的长称为对应边,宽也称为对应边,必须把放大后图形的边的长度作为前项,原来图形的边的长度作为后项。最后是“把原来的长方形按21的比放大”,让学生体会由于放大后与放大前两个长方形的对应边的长度关系是21,因而把图形的放大说成21。这里还示范了图形放大的规范表述“按21的比放大”。在初步理解图形放大的基础上,教材引导学生主动迁移,认识图形的缩小。例2引导学生在画图前先思考放大(或缩小)后图形的长、宽各是几格,应用概念进行推理,为正确画图做准备。在画图以后,还要观察原来的图形、放大后的图形、缩小后的图形,再次体会图形放大、缩小时,每条边的长度都按相同的比变化。在例3的情境中,放大前长方形长与宽的比是6.44,放大后长方形长与宽的比是9.66,利用这两个比教学比例的意义。先分别计算6.44和9.66的比值,从比值都是1.6得出这两个比相等,可以写成6.44=9.66或6.4/4=9.6/6,指出表示两个比相等的式子叫做比例,突出比例是比值相等的两个比组成的等式。然后让学生思考放大后与放大前两张照片长的比和宽的比也能组成比例吗,经历写出比、算比值、发现比值相等、组成比例的过程,体会比例的意义。例3既从放大前长与宽的比和放大后长与宽的比组成比例,又从放大后与放大前长的比和宽的比组成比例,引导学生利用比例的意义进一步完善图形放大的概念。除了图形放大与缩小,从常见的数量关系中也能找到比例。练习九第3题,第7题,这些素材能加强对比例的理解,还为以后教学正比例作了铺垫。2联系实际,发现和应用比例的基本性质。例4教学比例的基本性质,大致分五步进行: 第一步在按比例缩小三角形的情境中写出一些比例,为研究比例的基本性质准备充分的素材;第二步教学比例的内项和外项,这是认识比例基本性质必须具备的概念;第三步观察已经写出的几个比例,初步发现比例的两个外项的积等于两个内项的积;第四步重新写出一些比例,看看是否具有同样的规律,并在字母表示的比例上概括这样的规律;第五步指出发现的规律是比例的基本性质,并在写成分数形式的比例上体会这一性质。例5应先根据“照片放大后与放大前长的比和宽的比能组成比例”这个知识写比例,发现要写的比例里有三个项是已知数,另一个项是未知数,于是想到把放大后照片的宽设为x厘米,列出比例解决问题。这个比例也是一个方程,教材写出了解方程的第一步6x=13.54,让学生思考这一步计算的依据是什么,体会这里应用了比例的基本性质,最后还指出求比例中的未知项叫做解比例。“试一试”解写成分数形式的比例,进一步熟悉比例的内项和外项。已经写出“1.2x=”引导学生应用比例的基本性质,体会这是解比例的关键步骤。3以图形的放大、缩小为基础,教学比例尺。平面图是把现实的平面按一定比例缩小绘制成的,从平面图想像实际平面的数学活动是把图形放大,比例尺刻画了平面图和实际平面之间的放大、缩小关系。例6教学比例尺的意义,首先要让学生在实际情境中识别实际距离和图上距离,这些是与比例尺有关的概念。其次分别写出草坪长的图上距离和实际距离的比,宽的图上距离和实际距离的比。在写比的时候,要指导学生统一图上距离与实际距离的单位,便于写比和化简比。比例尺11000表示图上距离是实际距离的1/1000,实际距离是图上距离的1000倍,这是对比例尺11000的意义作出的具体解释。教材让学生说出这些关系,进一步体会比例尺的意义。从图上距离与实际距离间的倍数关系,还能得到图上距离1厘米表示实际距离10米,这就引出了比例尺的另一种表示形式线段比例尺。 “练一练”第1题分别解释数值比例尺与线段比例尺的具体含义,两种形式的比例尺之间的关系就能得到沟通。第2题求平面图的比例尺,学生在例题里进行过写出图上距离与实际距离的比并化简的活动,应该有能力独立完成这道题。例7学生对比例尺18000的意义会有不同的解释,因而可能出现不同的解题思路和方法。有的学生会从图上距离与实际距离的倍数关系进行思考,有的学生会把数值比例尺转换成线段比例尺,列式和计算比较方便。 “试一试”要求在例7的平面图上表示出医院的位置,算出学校到医院的图上距离后解题并没有结束,还要在学校正北方3厘米处作个记号表示医院,并在学校与医院之间连条线段。第四单元确定位置教材分析在前面的教材里已经多次教学确定位置的知识。一年级(上册) 用上、下、前、后、左、右描述物体的相对位置。二年级(上册) 用“第几排第几个”的形式描述物体所在的位置。用东、南、西、北描绘物体所在的方向。二年级(下册) 认识东北、东南、西北、西南等方向。用方向词描述行走路线。五年级(下册) 用“数对”确定物体在平面上的位置。本单元要从方向和距离两个方面确定物体所在的位置。1在已有方向知识的基础上,教学新的确定位置方法。例1分成四步进行教学。第一步呈现一艘轮船向正北方向航行的情境图,让学生看出图中的灯塔1在轮船的东北方向,灯塔2在轮船的西北方向,激活已有的方向经验。第二步教学“北偏东”“北偏西”两个方向知识。生活中经常使用东、南、西、北四个主要方向,以及东北、东南、西北、西南四个辅助方向。航海时除了使用正东、正南、正西、正北以外还使用北偏东、北偏西或者南偏东、南偏西的方式表示方向。例题结合轮船航行的情境图,指出东北方向叫做北偏东、西北方向叫做北偏西,帮助学生联系已有的方向知识,初步建立两个新方向词的概念。第三步根据情境图上灯塔1和轮船的连线与正北方向的夹角30方向,把灯塔1所在方向说成“轮船的北偏东30方向”,让学生进一步感受“北偏东”的含义,体会北偏东30比较清楚地描述了物体所在的方向。第四步利用情境图上的比例尺和图上距离,算出轮船到灯塔1的实际距离,从而知道灯塔1在“轮船的北偏东30方向6千米处”。在描述灯塔2的位置时,引导学生把西北方向说成“北偏西”,让学生,完整地说出灯塔2相对于轮船的方向和距离,巩固例题教学的确定位置的知识和方法。练习十二第1、2题配合例1的教学,第1题从北偏东、北偏西带出南偏东和南偏西。2根据实际的方向和距离,在平面图上表示出相应的位置。例2在安排学生讨论之后,利用小卡通的对话,突出了解决问题的思路。还要给予三点指导:一是“北偏东40”的射线要画得轻一些、细一些;二是在射线上找到清凉岛的位置,可以用一个圆点表示并在旁边标注“清凉岛”;三是把灯塔与清凉岛间的线段适当描粗一些,把射线的多余部分擦干净。要充分利用这道题形成用方向和距离确定位置的初步技能。可以分两步练习:第一步在平面图上任意找几条射线与圆的交点,说说这些点相对于机场的方向和实际距离;第二步在平面图上标出B、C、D、E四架飞架的位置。3应用确定位置的知识,描述行走的路线。例3在平面图上用箭头示意了李伟从家到学校的行走路线,要求说出图示的行走方向和路程,在现实的情境中应用确定位置的知识。教学时首先应让学生明白,要有条理地说出从家出发向什么方向走多少米到达哪里,再向什么方向走多少米到达哪里最终到达学校。然后鼓励学生把自己的想法在小组里交流,有的学生在描述时可能应用以前教学的“东北方向”,有的学生在描述时可能应用现在教学的“北偏东60方向”,这些描述都清楚地说出了李伟上学行走的路线。但是,要提醒学生注意平面图中给出了一些角的度数,用“北偏东60”描述行走方向比“东北方向”精确。第五单元正比例和反比例教材分析本单元进一步加强正、反比例的概念教学,突出正比例关系的图像及简单应用,重视正、反比例与现实生活的联系,淡化脱离现实背景判断比例关系,不安排应用正、反比例关系解决实际问题。1抽象实际事例中的数量变化规律,形成正比例的概念。例1在数量关系中,路程比时间等于速度是旧知识,速度“一定”是这个问题情境里的规律,是正比例概念的生长点。教材先指出路程和时间是两种相关联的量,用“时间变化,路程也随着变化”具体解释两种量的“相关联”。再指出这辆汽车行驶的路程和时间的比的比值总是一定,可以说路程和时间成正比例,它们是成正比例的量,学生在这里首次感知了正比例关系。“试一试”在另一组数量关系中继续感知正比例关系,第63页要形成正比例的概念。首先用字母表示数量,每个实例里都有两个相关联的量,分别是路程和时间或者总价与数量,用字母x和y表示两种相关联的量,用k表示它们的比值,表示成y/x=k(一定),并指出正比例关系可以用这个字母式子表示。用抽象的字母组成的式子表示正比例关系是认知难点,教学要联系两个实例,引导学生经历“字母表示具体的数量字母式子表示常见数量关系字母式子表示正比例关系”的过程。2用图像直观表达正比例关系。例2是按照标准的要求“根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值”编排的,设计的三个问题体现了教学正比例图像的三个步骤。第一步认识图像上的点,按照“A点表示1小时行80千米”“B点表示5小时行400千米”说出其他各点的具体含义,体会各个点都表示汽车在某段时间所行驶的路程,也体会这些点是根据对应的时间与路程的数据在方格纸上画出来的。第二步认识图像的形状,从图中描出的点在一条直线上,体会正比例关系的图像是一条直线。第三步应用图像,估计行驶时间所对应的路程或者行驶路程所用的时间。要指导学生利用画垂线或画平行线的技能,尽量使得数准确些。练习十三第4、5题配合例2的教学。判断实际问题里相关联的两种量成不成正比例有两种思路,一种是看画成的图像,另一种是根据正比例的意义,利用各组对应的数据写出比、求比值。3调动学生的积极性与数学活动经验,教学成反比例的量。例3教学反比例的意义,安排的教学活动线索和例1十分相似。在表格里可以看到笔记本的单价在变化,购买的数量也在变化,而且每组相对应的单价和数量的乘积都是60,用数量关系式“单价数量=总价(一定)”表示这个问题情境里两个变量的变化规律。在此基础上指出单价和数量是两种相关联的量,它们成反比例,是两个成反比例的量。“试一试”先把表格填写完整。通过上面四个实例的研究,学生初步感知了反比例的含义,于是用字母x、y表示两种相关联的量,用k表示两个量的乘积,把反比例关系表示成xy=k(一定),形成反比例的概念。学生认识正比例意义时的数学活动经验可以迁移到反比例意义的学习中来,教学时要给学生多提供一些独立思考和合作交流的机会。第六单元解决问题的策略教材分析本单元教学转化的策略。转化是解决问题时经常采用的方法,能把较复杂的问题变成较简单的问题,把新颖的问题变成已经解决的问题。转化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点有关。1回忆经历过的转化活动,初步感悟转化。例1通过回忆曾经进行过的转化,引导学生体验转化。首先比较方格纸上两个图形的面积,这两个图形都不是简单的图形,直接看出面积是不是相等有困难,用数方格的方法求面积很麻烦。如果把两个图形都转化成长方形,就能从转化后的两个长方形完全相同,知道原来的两个图形面积相等。教材让学生在直观的情境中想到转化,并应用图形的平移和旋转知识进行图形的等积变形,体会转化的含义和应用的手段,感受转化在解决这个问题时的价值。“试一试”这道题要注意三点:一是让学生在直观图形的启发下,独立进行转化。二是在交流时展开转化的思考过程,要数形结合解释图意,图中的正方形表示1,1/2+1/4+1/8+1/16的和就是正方形里涂色部分的大小。还要突出算式转化是根据“涂色部分的大小等于1减空白部分的差”进行的。三是体会把原题转化,使计算简便了,让学生带着对转化的良好体验进行“练一练”的练习。“练一练”的关键是理解右边图形右上方的折线的长度等于长方形的一条长与一条宽的和。2转化要利用概念进行推理。例2解答较复杂的分数应用题,教材预设学生主动想到这样转化是有困难的,所以指出了转化的方向:如果把“男生人数是女生的2/3”转化成女生人数是美术组总人数的几分之几,就可以直接用乘法计算,让学生在“已知美术组的人数,求女生人数”这个问题情境中体会这样转化是解决问题的策略。教材放手让学生自主开展具体的转化活动,凭借对“男生人数是女生的2/3”的理解,或是把2/3看作男、女生人数的份数关系,或是把2/3看作男、女生人数的比,都能通过推理得到女生人数是美术组总人数的3/5。“练一练”把美术组人数是合唱组的5/8理解成美术组人数和合唱组人数的比是58,就能转化成合唱组人数是美术组的8/5,于是不再用列方程的方法,而利用分数乘法较快地算出合唱组的人数。需要再次指出,例2和“练一练”都先向学生提示转化的方向,再让他们开展具体的转化活动。这就表明,教学不以这些分数应用题的一题多解为目的,而是以体会转化策略,培养推理能力为教学要求。3在丰富的题材里灵活应用转化策略。第1题是解决问题方法的转化,从数出比赛的场次到算出比赛的场次。第2、3题是图形保持面积不变或周长不变前提下的形状转化。第4-6题是数量关系的转化。第七单元统计教材分析本单元教学扇形统计图、众数和中位数,扇形统计图过去是选学内容,现在是基本的教学内容,而众数和中位数是根据标准的要求新增加的教学内容。扇形统计图能直观地表示出各个部分的数量分别是总数量的百分之几,众数和中位数都是统计量,在平均数不能有效地反映出一组数据的基本特点时,往往选用众数或中位数来表达数据的特点。1以百分数的知识为基础,教学扇形统计图。例1教学扇形统计图,分两步进行。第一步从整体到部分认识扇形统计图,让学生观察我国陆地地形分布情况统计图,体会图中的数据信息的具体含义,理解这张统计图用一个圆表示我国陆地的总面积,用五个扇形分别表示平原、盆地、高原、丘陵、山地各占国土总面积的百分之几。由于五种地形所占总面积的百分比不同,所以五个扇形的大小不同。教材及时指出,这样的统计图叫做扇形统计图,它能清楚地表示出各部分的数量与总数量之间的关系。经过这一步教学,学生知道扇形统计图与条形统计图、折线统计图相比,不仅形状不同,而且表达的数据内容也不相同。第二步根据已知的我国国土总面积,利用扇形统计图里的数据,分别算出五种地形的面积并填入统计表,进一步体会扇形统计图的特点。由于计算比较复杂,所以使用计算器。2联系现实的素材,教学众数和中位数。例2用表格呈现9个学生每人用20粒黄豆种子做发芽试验的结果,先看表在括号里填数,感受发芽17粒的人数最多,有5人。然后把9个数据依次排列,指出17出现的次数最多,是这组数据的众数。教学这一段内容,首先要形成正确的众数概念数据中出现次数最多的那个数。在发芽结果的数据中,17出现了5次,17是出现次数最多的数,5是它出现的次数,这组数据的众数是17,不是5。其次要知道求众数的方法在一组数据中寻找出现次数最多的那个数。不管这个数出现了几次,只要比其他数出现的次数多,它就是这组数据的众数。例题还要求计算这组数据的平均数,联系实际比较平均数和众数的意义,体会它们是两个不同的概念,进一步理解众数。第79页“练一练”第1题通过找出一组学生的年龄的众数,巩固众数概念和求众数的方法。第2题在解决实际问题时应用了众数,鞋店上周销售皮鞋中,25.5cm这个尺码的皮鞋售出的双数最多,25.5是这组数据的众数,所以进货时要多一些这个尺码的男鞋。例3要求学生评价7号男生的跳绳成绩在这组同学中的位置,有的学生可能根据算出的平均每人跳117下,认为7号男生跳的比平均数少。有的学生可能把7号男生跳的下数与其他男生比较,得出他的成绩是第三名。这些都是学生利用原有的知识、经验进行的比较。为什么7号男生跳的下数比平均数少,成绩还是第三名?为了解决这个疑问,例题先教学中位数的知识,指出把这组数据按大小排列,正中间的一个数102是这组数据的中位数,既揭示了中位数的含义,又讲了求中位数的方法。再把7号男生的成绩与中位数比,看到尽管他跳的下数比平均数少,却比中位数大,在这9个男生中的名次还是比较靠前的,初步体会中位数与平均数是两个不同的统计量。例题还要学生思考为什么这组数据的平均数比中位数多得多,这是由于2号和8号男生的成绩十分突出,远远多于其他男生跳的下数,他俩的优异成绩使男生跳绳的平均数大了,而多数男生的跳绳成绩都低于这个水平。所以,如果一组数据里存在特别大或者特别小的极端数据,平均数往往不能准确地表达这组数据的整体状况,这时用中位数表示这组数据更合适。例4求10个女生跳绳成绩的中位数,这组数据的个数是双数。教材指出,正中间有两个数,中位数是这两个数的平均数,并要求学生算出这组数据的中位数,学会求这种情况的中位数的方法。然后把各个女生的成绩分别与中位数比较,体会用中位数能评价每个数据在整体里的地位。第八单元总复习教材分析1 “数与代数”领域。(1) 回忆学过的数,沟通整数、小数、分数的联系,突出数的应用,重视培养数感。本单元编排数的认识这一节,要复习这些数的意义,形成清晰的数概念。先让学生说说学过了哪些数,以及对这些数和相互联系的认识,四个卡通的交流是学生的初步回忆,在初步回忆的基础上,教材提出三个讨论题,进一步梳理知识。表示整数和小数都应用十进制计数法,在讨论题(1)里应该联系具体的整数和小数,复习计数单位和数位的知识,理解相邻计数单位间的进率都是10;还要分析整数和小数的组成,体会十进制计数法,正确掌握读数方法。百分数只表示一个数是另一个数的百分之几,也就是只表示两个数的比,不表示具体的数量。这既是百分数与分数的联系,也是它们的区别。讨论题(2)要联系实例进行比较,如把1吨煤平均分成5份,用去其中的1份,用去了这些煤的1/5,是1/5吨。如果用百分数来表示,只能是用去了这些煤的20%,不能说用去了20%吨。在小数的末尾添上0或者去掉0,只改变小数的计数单位,不改变小数的大小。如0.50是50/100,而0.500是50/1000,0.5是5/10。小数的性质与分数的基本性质是一致的,可以用对应排列的两组等式来说明.讨论题(3)用分数的基本性质说明小数的性质,能进一步理解小数意义以及小数与分数的联系。练习与实践编排了14道习题,进一步复习数的知识。涉及的内容有数的意义和表示方法,数的改写与求近似数,数的大小比较,通过移动小数点的位置计算一个数乘(或除以)10、100、1000,因数与倍数的概念以及有关的知识。教学这些题要注意两点,一是先让学生独立解答,再组织交流,进行必要的评讲。第1题要说说填数时的思考,利用直线下面的整数,理解负数是与正数意义相反的数,是比0小的数;利用直线上面的数理解真分数、假分数的意义;把直线上、下的分数和小数联系起来,理解数之间的关系。第9题要体会改变大数的单位或求大数的近似数,能方便对数的理解或读、写。第10题里包含许多概念,要理解素数与合数、奇数和偶数是按不同标准对数进行分类,还要整理因数与倍数、公因数与公倍数的概念和相互关系。二是让学生体会数的实际应用,发展数感。第3题解释车票和商品标识上的数的具体含义,第4题自主收集用数表达的信息,能让学生体验数描述了生活中的现象、事物,感受用数表达和交流信息,既方便又准确。第12题体会各组数的发展趋势,第13题借助直观图形进行估计,第14题结合图形感受数的大小,这些题把发展数感落实到应用知识解决实际问题的过程中。(2) 整理数的运算知识,培养计算能力和解决实际问题的能力。数的运算分两段复习,第一段复习四则计算,第二段复习四则混合运算和运算律。复习四则计算,第87页练习与实践从两方面培养计算能力,一是通过第14题练习口算、笔算和估算,使学生能正确计算,并具有验算的习惯。对口算的基本要求是:能计算百以内的两位数加、减两位数以及相应的小数加、减法,能计算百以内的两位数乘一位数、两位数除以一位数以及相应的小数乘、除法,能进行比较简单的分数四则计算。对笔算的基本要求是:能计算三位数的加、减法及相应的小数加、减法,能计算三位数乘两位数、三位数除以两位数及相应的小数乘、除法,能进行分数的四则计算。对整数四则计算的估算要求是:把参与运算的数看作最接近的整百数或整十数,通过口算得到结果大约是多少。二是通过第5题学会从实际问题和自己的计算水平出发,选择比较适宜的计算方式,省力而高效地解决实际问题。对大多数学生而言,第(1)题可以口算,第(2)题可以估算,第(3)题可以笔算,第(4)题可以使用计算器。个别学生解答第(2)题用笔算、第(3)题用口算也是允许的。第89页练习与实践第1、2题,让学生选择合适的方法计算,从中可以获得两点体会:第一,运算顺序是进行混合运算的一般规则,而运算律能改变原来的运算顺序;第二,简便运算是有条件地进行的,在计算时要认真审题,发现和利用可以简便计算的条件与机会。教学第7-12题要充分发挥一题多问或题组的作用,通过比较、梳理强化概念和解题思路。(3) 复习式与方程的知识,发展解决问题的策略。在这一节教材里,通过三个问题提取用字母表示数的经验,整理方程与等式的联系和区别,回忆学过的等式性质,这些都用举例说明的方式进行。含有字母的式子不仅能表示周长、面积、体积的计算公式,能表示运算律,还能表示常用的数量关系。练习与实践第1题用字母表示数量关系,是列方程解决实际问题的基础,教学这道题要让学生说说式子里的字母表示什么数量,式子表示什么数量,式子是根据什么数量关系写的,以及用字母表示数应遵循的书写规则。第2题要解释解方程的过程,说说等式的两边同时加上或减去了几、同时乘或除以了几。列方程是解决实际问题的常用方法,列方程的思考和列算式不同,要利用题目中最主要的数量关系作为列方程的依据。(4) 复习正比例和反比例,把握变化着的现象里的不变特征。复习比的知识抓住三点进行,一是举实例说说什么是比,既要有两个同类数量的比,也要有两个不同类数量的比,使学生对比的含义有比较全面的理解。二是通过改写ab,沟通比与分数、除法的关系,从除数不能是0体会分母、比的后项也不能是0。三是找出比的基本性质、分数的基本性质、商不变的规律之间的内在联系,完善认知结构。复习正比例和反比例,重点是它们的意义。再通过第7、8题的判断,进一步巩固正比例和反比例的概念。第9题复习正比例的图像,其中汽车行驶的路程和耗油量是否成正比例,要利用图像找出几组相对应的数,组成比并求出比值,根据正比例的意义进行判断。2 “空间与图形”领域。“空间与图形”领域的内容分图形的认识、测量、图形与变换、图形与位置三节编排复习。(1) 分层复习图形知识,沟通平面图形间的联系。复习图形知识按“线角形”的线索进行。复习直线、射线和线段的特征,一方面要突出它们都是直的线,另一方面要清楚它们的区别在于有、无端点和有几个端点。平行与相交,是同一平面内两条直线的常见位置关系。学生举例说说同一平面内两条直线的位置关系,有可能只说出平行与垂直,也有可能说成平行、相交、垂直。如果出现这些情况,应适当予以纠正。复习角的认识把这两种认识结合起来,“围绕角的顶点旋转角的一条边”要先出现角的图形,指出它的顶点和两条边,然后使角的顶点和一条边固定不动,另一条边旋转,让学生体会角的大小发生了变化,从而理解角的大小是它两条边的叉开程度。复习角的分类可以分三步进行,第一步随着活动角从小到大地变化依次回忆锐角、直角、钝角、平角与周角。第二步分别说出直角、平角和周角的度数,整理这三类角的大小关系。第三步描述锐角和钝角,突出钝角大于90、小于180。回忆三角形的知识时,出现了两张集合图。左边的图表示了三角形的分类,曾经在四年级(下册)出现过,可以利用这幅图让学生说说三角形是怎样分类的,以及各类三角形的特征。右边的图第一次在教材中出现,表示等腰三角形是特殊的三角形,等边三角形是特殊的等腰三角形。教材还提出两个讨论题,在问题(1)里“任意两边的长度之和大于第三边”是三角形的三边关系,也是三条线段能够围成三角形的必备条件。要引导学生注意“任意”的含义,并应用到练习与实践第8题的解答中去。提出问题(2)有两个目的:一是进一步理解三角形的分类,在直角三角形和钝角三角形里也都有两个锐角;二是复习三角形内角和180,用内角和的知识可以解释一个三角形里最多有一个直角或一个钝角。整理四边形的知识,设计了一张反映这些特殊四边形的关系图,从图中可以看到,如果四边形的两组对边分别平行就是平行四边形;如果只有一组对边平行就是梯形。如果平行四边形的角都是直角就是长方形,如果长方形的长与宽相等就是正方形。学生说出各个图形的名称和特征并不难,要把教学精力放在理解图形间的关系上,深入地认识四边形。(2) 复习平面图形的周长、面积,突出概念和思想方法。复习这些知识按“概念与计量单位计算方法或公式实际应用”的线索进行。复习周长与面积的意义,以回忆和辨认为主要教学活动,让学生说说对周长与面积的理解,可以联系实例进行解释。练习与实践第5题分别比较方格纸上两组图形的周长与面积,进一步体会周长与面积是存在于封闭图形上的两个不同的概念。复习长度单位和面积单位,让每个学生都用学过的单位描述身边的事物,在交流时就能整理出常用的长度单位千米、米、分米、厘米、毫米,整理出常用的面积单位平方千米、公顷、平方米、平方分米、平方厘米。练习与实践第2题以用纸折出1平方分米的正方形顺带复习其他面积单位的意义,通过1平方分米的正方形最多能分成几个1平方厘米的正方形,复习相邻单位间的进率。复习长度单位和面积单位要重视两点:一是让学生选择用手比画、语言描述、实物演示等方法表达1个单位是多长或多大,如1米大约是多长,1平方米是多大;二是要整理并记住相邻单位间的进率,下图就是一种整理方式。复习周长与面积计算公式的教学活动主要是回忆和整理。(3) 整合立体图形的知识,发展空间观念。立体图形是六年级教学的,圆柱、圆锥还是本册教材的新授内容。因此,立体图形的知识容易回忆,复习的目的不局限于回忆,还要整合知识,进一步精简和优化原有的认知结构。首先理解“正方体是特殊的长方体”,体会正方体具有长方体的全部特征。接着从意义和算法两个方面把长方体、正方体、圆柱的表面积联系起来,体会它们的表面积是所有面的面积总和,都是侧面积与两个底面积的总和,而且侧面积都可以通过“底面周长高”计算。最后还用“底面积高”概括长方体、正方体和圆柱的体积计算公式。通过这些整合,学生对立体图形的认识能提升一个层次,不再孤立地理解、记忆各个立体图形的表面积、体积的计算方法。教材安排了许多有利于发展空间观念的学习活动,有观察几何体,把从正面、上面、侧面看到的图形画下来,或者根据给定的视图想像和做出立体;把平面图形绕它的一条边旋转,体会形成的立体;补充长方体的表面展开图,设计正方体的表面展开图;还要解答开放的实际问题。(4) 在方格纸上画图形,复习图形与变换的知识。在图形与变换这一节里,复习的内容有轴对称图形、平移、旋转以及图形的放大与缩小等。先回忆学过的图形变换,整理成图形位置变化和图形大小变化两类。理解平移、旋转都是改变图形位置的方法,不改变图形的大小;图形按比例放大、缩小,是改变图形大小的方法,不改变图形的形状。这些都是关于图形变换的基础知识。轴对称图形是一类特殊的平面图形,它的对称轴的两边形状、大小完全相同,而且沿对称轴对折图形,对称轴的两边能完全重合。练习与实践让学生在方格纸上画图形,进一步体会图形的变换。其中第2题集中了小学阶段教学的图形变换的全部内容,在前面的教学中进行过这些画图活动。第3题综合应用平移与轴对称两个知识。圆是轴对称图形,经过圆心的直线都可以看作圆的对称轴。把圆与线段组合成轴对称图形,应着重思考线段的对称轴的位置。第(3)个问题引导学生观察画成的轴对称图形和它的对称轴,体会对称轴通过圆心并和已知线段垂直,而且把这条线段平均分成两段。第4题把图形按比例缩小后,计算新图形与原来图形的面积的比,再次体会“按12的比缩小”是把图形每条边的长度变成原来的1/2,这个比不是面积缩小的比,进一步理解图形按比例放大或缩小的含义。(5) 在确定位置的活动中,复习图形与位置的知识。确定位置的方法是逐渐教学的,先是联系个体经验,用上、下、前、后、左、右描述位置;再是联系生活常识,用东、南、西、北等八个方向词描述位置;然后既要描述方向,又要描述距离,比较准确地描述位置。另外,还可以用数对表示位置。复习图形与位置,在具体情境中应用知识,进一步体会确定位置的常用方法。练习与实践在第1题的问题(1)里复习方向知识,应先确定平面图上的东、南、西、北,再确定东北、东南、西北、西南,动物园里任何两个景点的位置关系都可以用这些方向词描述。问题(2)用数对表示位置,要提醒学生遵照“横排是行、竖排是列”的规定,先写出各景点所在的列数,再写所在的行数。如孔雀园在第6列第4行,表示它所在位置的数对是(6, 4)。第2题用方向和距离确定位置,要引导学生注意两点: 一是描述方向只能用北偏东(西)或南偏东(西)若干度,不能随意改变说法;二是把比例尺150000转化成“图上1厘米表示实际500米”,容易进行图上距离与实际距离的相互换算。第3题描述行走路线,进一步掌握方向知识。一般应要求学生口述,不必以书面形式回答。如果要求学生写出行走的方向与路线,应该用填空的形式。如从东园向()偏()( )方向行到兴民巷。另外,这题不宜要求学生说出从淮定桥到红梅新村的行走方向。3. “统计与概率”领域。复习统计与概率领域的知识,教材分统计、可能性两节编排。(1) 注重数据统计活动,突出收集、整理、描述与利用信息的过程。新课程中,统计知识的教学观念发生了很大变化,不再片面追求制作统计图表的方法和技术,把描述信息、利用信息进行判断与推理作为统计教学的重要内容。总复习坚持新的教学观念,突出以下三点:第一,回顾开展过的调查活动,积累收集、整理数据的经验。第二,选择合适的描述数据的方式,使数据内容具有直观性。第1题为两组数据选择合适的统计图。第2题里的复式条形图是以前没有见过的,在这幅图上能直接看到各兴趣小组的总人数,但了解各组的女生人数不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论