




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
考点规范练44直线与圆、圆与圆的位置关系一、基础巩固1.已知圆:(x-1)2+y2=2,则过该圆上的点(2,1)作圆的切线方程为()A.x+y-3=0B.2x+y-5=0C.x=2D.x-y-1=0答案A解析由题意可得圆心坐标为(1,0),根据斜率公式可得圆心(1,0)与(2,1)连线的斜率为1-02-1=1,故过该圆上的点(2,1)的切线斜率为-1,过该圆上的点(2,1)的切线方程为y-1=-(x-2),即x+y-3=0.2.已知圆M:x2+y2-2ay=0(a0)截直线x+y=0所得线段的长度是22,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是()A.内切B.相交C.外切D.相离答案B解析圆M的方程可化为x2+(y-a)2=a2,故其圆心为M(0,a),半径R=a.所以圆心到直线x+y=0的距离d=|0+a|12+12=22a.所以直线x+y=0被圆M所截弦长为2R2-d2=2a2-22a2=2a,由题意可得2a=22,故a=2.圆N的圆心N(1,1),半径r=1.而|MN|=(1-0)2+(1-2)2=2,显然R-r|MN|0)相交于A,B两点,且AOB=120(O为坐标原点),则r=.答案2解析如图,由题意知,圆心O到直线3x-4y+5=0的距离|OC|=532+(-4)2=1,故圆的半径r=1cos60=2.8.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0.(1)求证:对mR,直线l与圆C总有两个不同的交点;(2)设直线l与圆C交于A,B两点,若|AB|=17,求直线l的倾斜角.(1)证明将已知直线l化为y-1=m(x-1);故直线l恒过定点P(1,1).因为12+(1-1)2=10,解得-255m255,故x0=31+m2,且53x03.因为m=y0x0,所以x0=31+y0x02,整理得x0-322+y02=94.所以M的轨迹C的方程为x-322+y2=94530)上的一个动点,PA,PB是圆C:x2+y2-2y=0的两条切线,A,B是切点,若四边形PACB的面积的最小值为2,则实数k的值为.答案2解析根据题意画出图形如下图所示.由题意得圆C:x2+y2-2y=0的圆心C(0,1),半径为r=1,由圆的性质可得S四边形PACB=2SPBC,四边形PACB的面积的最小值为2,SPBC的最小值S=1=12rd(d是切线长),dmin=2,此时|CP|min=5.圆心到直线的距离就是PC的最小值,51+k2=5,又k0,k=2.13.已知圆C:x2+y2+2x-4y+3=0.若圆C的切线在x轴和y轴上的截距的绝对值相等,求此切线的方程.解因为切线在两坐标轴上的截距的绝对值相等,所以切线的斜率为1或切线过原点.当k=1时,设切线方程为y=-x+b或y=x+c,分别代入圆C的方程得2x2-2(b-3)x+(b2-4b+3)=0或2x2+2(c-1)x+(c2-4c+3)=0.由于相切,则方程有两个相等的实数根,即b=3或b=-1,c=5或c=1.故所求切线方程为x+y-3=0,x+y+1=0,x-y+5=0,x-y+1=0.当切线过原点时,设切线方程为y=kx,即kx-y=0.由|-k-2|k2+1=2,得k=26.所以此时切线方程为y=(26)x.综上可得切线方程为x+y-3=0,x+y+1=0,x-y+5=0,x-y+1=0,(2-6)x-y=0或(2+6)x-y=0.14.如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得TA+TP=TQ,求实数t的取值范围.解因为圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.(1)由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,所以0y00),若曲线x2+y2-23x-2y+3=0上存在点P,使得APB=90,则正实数a的取值范围为()A.(0,3B.1,3C.2,3D.1,2答案B解析把圆的方程x2+y2-23x-2y+3=0化为(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年家居装饰设计师专业技能认证考试试题及答案解析
- 2025年安全生产培训题库重点练习
- 2025年广告策划师国家职业资格考试试题及答案解析
- 2025年农业环保技术员招聘面试题库及答案
- 2025年西医师内科学重点题库
- 2025年网络安全精英挑战赛模拟题集
- 2025年安全员管理知识题库模拟题
- 文库发布:课件app
- 2025年高等数学教师资格考试试题及答案解析
- 2025年儿童心理咨询师专业知识考试试题及答案解析
- 儿科系列常见病中药临床试验设计与评价技术指南-变应性鼻炎
- T-JSIA 0002-2022 能源大数据数据目录指南
- 医疗设备与医院感染控制
- 铁路桥涵设备检查-铁路桥梁桥面检查
- 2023施工项目部标准化工作手册
- 七年级生物《哺乳动物》教案
- 【数学】四川省普通高中2024届高三上学期学业水平考试试题(解析版)
- 原发性骨质疏松症诊疗指南(2022版)第一部分
- 初中信息技术奥赛基础知识
- 重庆医科大学附属第一医院改建PET-CT、PET-MR项目环评报告
- 2022水电站计算机监控系统上位机现场验收标准手册
评论
0/150
提交评论