已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,齐次方程,机动 目录 上页 下页 返回 结束,第三节,一、齐次方程,*二、可化为齐次方程,第七章,一、齐次方程,形如,的方程叫做齐次方程 .,令,代入原方程得,两边积分, 得,积分后再用,代替 u,便得原方程的通解.,解法:,分离变量:,机动 目录 上页 下页 返回 结束,例1. 解微分方程,解:,代入原方程得,分离变量,两边积分,得,故原方程的通解为,( 当 C = 0 时, y = 0 也是方程的解),( C 为任意常数 ),机动 目录 上页 下页 返回 结束,例2. 解微分方程,解:,则有,分离变量,积分得,代回原变量得通解,即,说明: 显然 x = 0 , y = 0 , y = x 也是原方程的解, 但在,(C 为任意常数),求解过程中丢失了.,机动 目录 上页 下页 返回 结束,一阶线性微分方程,机动 目录 上页 下页 返回 结束,第四节,一、一阶线性微分方程,*二、伯努利方程,第七章,一、一阶线性微分方程,一阶线性微分方程标准形式:,若 Q(x) 0,称为非齐次方程 .,1. 解齐次方程,分离变量,两边积分得,故通解为,称为齐次方程 ;,机动 目录 上页 下页 返回 结束,对应齐次方程通解,齐次方程通解,非齐次方程特解,2. 解非齐次方程,用常数变易法:,则,故原方程的通解,即,即,作变换,两端积分得,机动 目录 上页 下页 返回 结束,例1. 解方程,解: 先解,即,积分得,即,用常数变易法求特解. 令,则,代入非齐次方程得,解得,故原方程通解为,机动 目录 上页 下页 返回 结束,思考与练习,判别下列方程类型:,提示:,可分离 变量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银发旅游文化体验与交流平台建设方案
- 给水设施能效提升改造方案
- 位签订劳务合同范本
- 大口径薄壁管材生产线项目风险评估报告
- 银行物业服务合同范本
- 排水系统抗洪能力提升技术方案
- 草莓供货协议合同范本
- 乙方建材销售协议书
- 钢结构安装质量控制及验收方案
- 代购代收协议书范本
- 急性心肌梗死护理管理指南
- 铝板板材外墙施工技术交底
- 2025下半年四川省自然资源投资集团社会招聘考试笔试参考题库附答案解析
- 2025年入党积极分子发展对象考试通关试卷提供答案解析含完整答案详解【典优】
- 《祖国啊我亲爱的祖国》课件
- 腾讯手机行业消费趋势洞察报告(2025年版)-腾讯营销洞察x益普索-202510
- 金属行业入门知识培训课件
- 2025至2030全球及中国高光谱传感器行业发展趋势分析与未来投资战略咨询研究报告
- 一带一路人工智能+数字基础设施建设研究报告
- 海外专利布局优化-洞察与解读
- 安全生产管理机构及管理人员配备
评论
0/150
提交评论