




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷阿克陶县第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 “方程+=1表示椭圆”是“3m5”的( )条件A必要不充分B充要C充分不必要D不充分不必要2 若实数x,y满足,则(x3)2+y2的最小值是( )AB8C20D23 利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅下表来确定断言“X和Y有关系”的可信度,如果k5.024,那么就有把握认为“X和Y有关系”的百分比为( )P(K2k)0.500.400.250.150.100.050.0250.0100.0050.001k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828A25%B75%C2.5%D97.5%4 “x0”是“0”成立的( )A充分非必要条件B必要非充分条件C非充分非必要条件D充要条件5 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( )A36种B38种C108种D114种6 设全集U=1,3,5,7,9,集合A=1,|a5|,9,UA=5,7,则实数a的值是( )A2B8C2或8D2或87 已知直线l1 经过A(3,4),B(8,1)两点,直线l2的倾斜角为135,那么l1与l2( )A垂直B平行C重合D相交但不垂直8 已知曲线C1:y=ex上一点A(x1,y1),曲线C2:y=1+ln(xm)(m0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|e恒成立,则m的最小值为( )A1BCe1De+19 将函数的图象向左平移个单位,再向上平移3个单位,得到函数的图象,则的解析式为( )A BC D【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度.10设全集U=1,2,3,4,5,集合A=2,3,4,B=2,5,则B(UA)=( )A5B1,2,5C1,2,3,4,5D11抛物线E:y2=2px(p0)的焦点为F,点A(0,2),若线段AF的中点B在抛物线上,则|BF|=( )ABCD12已知抛物线的焦点为,点是抛物线上的动点,则当的值最小时,的面积为( )A. B.C. D. 【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.二、填空题13定积分sintcostdt=14如果椭圆+=1弦被点A(1,1)平分,那么这条弦所在的直线方程是15设为锐角,若sin()=,则cos2=16【泰州中学2018届高三10月月考】设函数是奇函数的导函数,当时,则使得成立的的取值范围是_17如图,ABC是直角三角形,ACB=90,PA平面ABC,此图形中有个直角三角形18正六棱台的两底面边长分别为1cm,2cm,高是1cm,它的侧面积为三、解答题19从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,计算得xi=80, yi=20, xiyi=184, xi2=720(1)求家庭的月储蓄对月收入的回归方程;(2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄20由四个不同的数字1,2,4,x组成无重复数字的三位数(1)若x=5,其中能被5整除的共有多少个?(2)若x=9,其中能被3整除的共有多少个?(3)若x=0,其中的偶数共有多少个?(4)若所有这些三位数的各位数字之和是252,求x21某港口的水深y(米)是时间t(0t24,单位:小时)的函数,下面是每天时间与水深的关系表:t03691215182124y10139.97101310.1710经过长期观测,y=f(t)可近似的看成是函数y=Asint+b(1)根据以上数据,求出y=f(t)的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?22已知mR,函数f(x)=(x2+mx+m)ex(1)若函数f(x)没有零点,求实数m的取值范围;(2)若函数f(x)存在极大值,并记为g(m),求g(m)的表达式;(3)当m=0时,求证:f(x)x2+x323设数列an的前n项和为Sn,a1=1,Sn=nann(n1)(1)求证:数列an为等差数列,并分别求出an的表达式;(2)设数列的前n项和为Pn,求证:Pn;(3)设Cn=,Tn=C1+C2+Cn,试比较Tn与的大小 24已知双曲线C:与点P(1,2)(1)求过点P(1,2)且与曲线C只有一个交点的直线方程;(2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由阿克陶县第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:若方程+=1表示椭圆,则满足,即,即3m5且m1,此时3m5成立,即充分性成立,当m=1时,满足3m5,但此时方程+=1即为x2+y2=4为圆,不是椭圆,不满足条件即必要性不成立故“方程+=1表示椭圆”是“3m5”的充分不必要条件故选:C【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题2 【答案】A【解析】解:画出满足条件的平面区域,如图示:,由图象得P(3,0)到平面区域的最短距离dmin=,(x3)2+y2的最小值是:故选:A【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题3 【答案】D【解析】解:k5、024,而在观测值表中对应于5.024的是0.025,有10.025=97.5%的把握认为“X和Y有关系”,故选D【点评】本题考查独立性检验的应用,是一个基础题,这种题目出现的机会比较小,但是一旦出现,就是我们必得分的题目4 【答案】A【解析】解:当x0时,x20,则0“x0”是“0”成立的充分条件;但0,x20,时x0不一定成立“x0”不是“0”成立的必要条件;故“x0”是“0”成立的充分不必要条件;故选A【点评】判断充要条件的方法是:若pq为真命题且qp为假命题,则命题p是命题q的充分不必要条件;若pq为假命题且qp为真命题,则命题p是命题q的必要不充分条件;若pq为真命题且qp为真命题,则命题p是命题q的充要条件;若pq为假命题且qp为假命题,则命题p是命题q的即不充分也不必要条件判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系5 【答案】A【解析】解:由题意可得,有2种分配方案:甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法根据分步计数原理,共有323=18种分配方案甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共323=18种分配方案由分类计数原理,可得不同的分配方案共有18+18=36种,故选A【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法6 【答案】D【解析】解:由题意可得3A,|a5|=3,a=2,或a=8,故选 D7 【答案】A【解析】解:由题意可得直线l1的斜率k1=1,又直线l2的倾斜角为135,其斜率k2=tan135=1,显然满足k1k2=1,l1与l2垂直故选A8 【答案】C【解析】解:当y1=y2时,对于任意x1,x2,都有|AB|e恒成立,可得: =1+ln(x2m),x2x1e,01+ln(x2m),lnxx1(x1),考虑x2m1时1+ln(x2m)x2m,令x2m,化为mxexe,xm+令f(x)=xexe,则f(x)=1exe,可得x=e时,f(x)取得最大值me1故选:C9 【答案】B【解析】根据三角函数图象的平移变换理论可得,将的图象向左平移个单位得到函数的图象,再将的图象向上平移3个单位得到函数的图象,因此 .10【答案】B【解析】解:CUA=1,5B(UA)=2,51,5=1,2,5故选B11【答案】D【解析】解:依题意可知F坐标为(,0)B的坐标为(,1)代入抛物线方程得=1,解得p=,抛物线准线方程为x=,所以点B到抛物线准线的距离为=,则B到该抛物线焦点的距离为故选D12【答案】B 【解析】设,则.又设,则,所以,当且仅当,即时,等号成立,此时点,的面积为,故选B.二、填空题13【答案】 【解析】解: 0sintcostdt=0sin2td(2t)=(cos2t)|=(1+1)=故答案为:14【答案】x+4y5=0 【解析】解:设这条弦与椭圆+=1交于P(x1,y1),Q(x2,y2),由中点坐标公式知x1+x2=2,y1+y2=2,把P(x1,y1),Q(x2,y2)代入x2+4y2=36,得,得2(x1x2)+8(y1y2)=0,k=,这条弦所在的直线的方程y1=(x1),即为x+4y5=0,由(1,1)在椭圆内,则所求直线方程为x+4y5=0故答案为:x+4y5=0【点评】本题考查椭圆的方程的运用,运用点差法和中点坐标和直线的斜率公式是解题的关键15【答案】 【解析】解:为锐角,若sin()=,cos()=,sin= sin()+cos()=,cos2=12sin2=故答案为:【点评】本题主要考查了同角三角函数关系式,二倍角的余弦函数公式的应用,属于基础题16【答案】【解析】17【答案】4 【解析】解:由PA平面ABC,则PAC,PAB是直角三角形,又由已知ABC是直角三角形,ACB=90所以BCAC,从而易得BC平面PAC,所以BCPC,所以PCB也是直角三角形,所以图中共有四个直角三角形,即:PAC,PAB,ABC,PCB故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键18【答案】cm2 【解析】解:如图所示,是正六棱台的一部分,侧面ABB1A1为等腰梯形,OO1为高且OO1=1cm,AB=1cm,A1B1=2cm取AB和A1B1的中点C,C1,连接OC,CC1,O1C1,则C1C为正六棱台的斜高,且四边形OO1C1C为直角梯形根据正六棱台的性质得OC=,O1C1=,CC1=又知上、下底面周长分别为c=6AB=6cm,c=6A1B1=12cm正六棱台的侧面积:S=(cm2)故答案为: cm2【点评】本题考查正六棱台的侧面积的求法,是中档,解题时要认真审题,注意空间思维能力的培养三、解答题19【答案】 【解析】解:(1)由题意,n=10, =xi=8, =yi=2,b=0.3,a=20.38=0.4,y=0.3x0.4;(2)b=0.30,y与x之间是正相关;(3)x=7时,y=0.370.4=1.7(千元)20【答案】 【解析】【专题】计算题;排列组合【分析】(1)若x=5,根据题意,要求的三位数能被5整除,则5必须在末尾,在1、2、4三个数字中任选2个,放在前2位,由排列数公式计算可得答案;(2)若x=9,根据题意,要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,分“取出的三个数字为1、2、9”与“取出的三个数字为2、4、9”两种情况讨论,由分类计数原理计算可得答案;(3)若x=0,根据题意,要求的三位数是偶数,则这个三位数的末位数字为0或2或4,分“末位是0”与“末位是2或4”两种情况讨论,由分类计数原理计算可得答案;(4)分析易得x=0时不能满足题意,进而讨论x0时,先求出4个数字可以组成无重复三位数的个数,进而可以计算出每个数字用了18次,则有252=18(1+2+4+x),解可得x的值【解答】解:(1)若x=5,则四个数字为1,2,4,5;又由要求的三位数能被5整除,则5必须在末尾,在1、2、4三个数字中任选2个,放在前2位,有A32=6种情况,即能被5整除的三位数共有6个;(2)若x=9,则四个数字为1,2,4,9;又由要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,取出的三个数字为1、2、9时,有A33=6种情况,取出的三个数字为2、4、9时,有A33=6种情况,则此时一共有6+6=12个能被3整除的三位数;(3)若x=0,则四个数字为1,2,4,0;又由要求的三位数是偶数,则这个三位数的末位数字为0或2或4,当末位是0时,在1、2、4三个数字中任选2个,放在前2位,有A32=6种情况,当末位是2或4时,有A21A21A21=8种情况,此时三位偶数一共有6+8=14个,(4)若x=0,可以组成C31C31C21=332=18个三位数,即1、2、4、0四个数字最多出现18次,则所有这些三位数的各位数字之和最大为(1+2+4)18=126,不合题意,故x=0不成立;当x0时,可以组成无重复三位数共有C41C31C21=432=24种,共用了243=72个数字,则每个数字用了=18次,则有252=18(1+2+4+x),解可得x=7【点评】本题考查排列知识,解题的关键是正确分类,合理运用排列知识求解,第(4)问注意分x为0与否两种情况讨论21【答案】 【解析】解:(1)由表中数据可以看到:水深最大值为13,最小值为7,=10,且相隔9小时达到一次最大值说明周期为12,因此,故(0t24)(2)要想船舶安全,必须深度f(t)11.5,即,解得:12k+1t5+12k kZ又0t24当k=0时,1t5;当k=1时,13t17;故船舶安全进港的时间段为(1:005:00),(13:0017:00)【点评】本题主要考查三角函数知识的应用问题解决本题的关键在于求出函数解析式求三角函数的解析式注意由题中条件求出周期,最大最小值等22【答案】 【解析】解:(1)令f(x)=0,得(x2+mx+m)ex=0,所以x2+mx+m=0因为函数f(x)没有零点,所以=m24m0,所以0m4(2)f(x)=(2x+m)ex+(x2+mx+m)ex=(x+2)(x+m)ex,令f(x)=0,得x=2,或x=m,当m2时,m2列出下表:x(,m)m(m,2)2(2,+)f(x)+00+f(x)mem(4m)e2当x=m时,f(x)取得极大值mem当m=2时,f(x)=(x+2)2ex0,f(x)在R上为增函数,所以f(x)无极大值当m2时,m2列出下表:x(,2)2(2,m)m(m,+)f(x)+00+f(x)(4m)e2mem当x=2时,f(x)取得极大值(4m)e2,所以(3)当m=0时,f(x)=x2ex,令(x)=ex1x,则(x)=ex1,当x0时,(x)0,(x)为增函数;当x0时,(x)0,(x)为减函数,所以当x=0时,(x)取得最小值0所以(x)(0)=0,ex1x0,所以ex1+x,因此x2exx2+x3,即f(x)x2+x3【点评】本题考查的知识点是利用导数研究函数的单调性,利用函数研究函数的极值,其中根据已知函数的解析式,求出函数的导函数是解答此类问题的关键23【答案】 【解析】解:(1)证明:Sn=nann(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车自动防倾覆装置项目可行性研究报告
- 电子角膜曲率仪项目可行性研究报告
- 年产7.5万套地源热泵控制单元项目可行性研究报告
- 2025年创业创新大赛竞赛题目及答案解析
- 2025年初中政治特岗教师招聘面试高分攻略与实战模拟题
- 2025年法律实务案例分析实战指南与预测题集
- 2025年IT工程师招聘笔试复习笔记及预测试题
- 2025年产品经理进阶手册面试技巧与模拟题解析
- 2025年游戏开发岗位面试技巧及预测题
- 2025年搏击运动项目立项申请报告
- 铁路电力线路工资格考试题库及答案解析
- 河南省平顶山市城区2024-2025学年上学期七年级新生调研测试数学试题(原卷版)
- 政治论文2000字范文
- 电动车电池维修与更换合同
- JTS∕T 159-2021 水运工程模袋混凝土应用技术规范
- 2024年大学试题(大学选修课)-创业:道与术笔试参考题库含答案
- 口腔颌面部外伤的处理课件
- 《现代涉外礼仪》课件
- 社区生殖健康知识培训方案
- 耳鼻喉科患者的心理护理与干预策略
- 30道医院妇产科医生岗位高频面试问题附考察点及参考回答
评论
0/150
提交评论