




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
克山县一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若定义在R上的函数f(x)满足f(0)=1,其导函数f(x)满足f(x)k1,则下列结论中一定错误的是( )ABCD2 设偶函数f(x)在(0,+)上为减函数,且f(2)=0,则不等式0的解集为( )A(2,0)(2,+)B(,2)(0,2)C(,2)(2,+)D(2,0)(0,2)3 已知为自然对数的底数,若对任意的,总存在唯一的,使得成立,则实数的取值范围是( )A. B. C. D.【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力4 已知全集,集合,集合,则集合为( ) A. B. C. D.【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.5 若则的值为( ) A8 B C2 D 6 若曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b=( )A1B2C3D47 记集合和集合表示的平面区域分别为1,2, 若在区域1内任取一点M(x,y),则点M落在区域2内的概率为( ) A B C D【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力8 在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名并且北京大学和清华大学都要求必须有男生参加学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )A20种B22种C24种D36种9 某校在高三第一次模拟考试中约有1000人参加考试,其数学考试成绩近似服从正态分布,即(),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的,则此次数学考试成绩在100分到110分之间的人数约为( )(A) 400 ( B ) 500 (C) 600 (D) 80010设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为( )A1BCD11以过椭圆+=1(ab0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A相交B相切C相离D不能确定12双曲线:的渐近线方程和离心率分别是( )ABCD二、填空题13函数的单调递增区间是14三角形中,则三角形的面积为 .15【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=,对任意的m2,2,f(mx2)+f(x)0恒成立,则x的取值范围为_16将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是17设,实数,满足,若,则实数的取值范围是_【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力18已知i是虚数单位,复数的模为三、解答题19(本小题满分12分)设函数.(1)当时,求不等式的解集;(2)当时,恒成立,求实数的取值范围20已知数列an满足a1=a,an+1=(nN*)(1)求a2,a3,a4;(2)猜测数列an的通项公式,并用数学归纳法证明21已知等差数列满足:=2,且,成等比数列。(1) 求数列的通项公式。(2)记为数列的前n项和,是否存在正整数n,使得若存在,求n的最小值;若不存在,说明理由.22已知函数,(1)当时,求函数的单调区间;(2)若关于的不等式在上有解,求实数的取值范围23某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形()求出f(5);()利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式24(本小题满分12分)已知分别是椭圆:的两个焦点,且,点在该椭圆上(1)求椭圆的方程;(2)设直线与以原点为圆心,为半径的圆上相切于第一象限,切点为,且直线与椭圆交于两点,问是否为定值?如果是,求出定值,如不是,说明理由克山县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解;f(x)=f(x)k1,k1,即k1,当x=时,f()+1k=,即f()1=故f(),所以f(),一定出错,故选:C2 【答案】B【解析】解:f(x)是偶函数f(x)=f(x)不等式,即也就是xf(x)0当x0时,有f(x)0f(x)在(0,+)上为减函数,且f(2)=0f(x)0即f(x)f(2),得0x2;当x0时,有f(x)0x0,f(x)=f(x)f(2),x2x2综上所述,原不等式的解集为:(,2)(0,2)故选B3 【答案】B 【解析】4 【答案】C.【解析】由题意得,故选C.5 【答案】B【解析】试题分析:,故选B。考点:分段函数。6 【答案】A【解析】解:f(x)=acosx,g(x)=x2+bx+1,f(x)=asinx,g(x)=2x+b,曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,f(0)=a=g(0)=1,且f(0)=0=g(0)=b,即a=1,b=0a+b=1故选:A【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题7 【答案】A【解析】画出可行域,如图所示,1表示以原点为圆心, 1为半径的圆及其内部,2表示及其内部,由几何概型得点M落在区域2内的概率为,故选A.8 【答案】C【解析】解:根据题意,分2种情况讨论:、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,共有=12种推荐方法;、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,共有=12种推荐方法;故共有12+12=24种推荐方法;故选:C9 【答案】A【解析】 P(X90)P(X110),P(90X110)1,P(100X110),1000400. 故选A.10【答案】D【解析】解:设函数y=f(x)g(x)=x2lnx,求导数得=当时,y0,函数在上为单调减函数,当时,y0,函数在上为单调增函数所以当时,所设函数的最小值为所求t的值为故选D【点评】可以结合两个函数的草图,发现在(0,+)上x2lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值11【答案】C【解析】解:设过右焦点F的弦为AB,右准线为l,A、B在l上的射影分别为C、D连接AC、BD,设AB的中点为M,作MNl于N根据圆锥曲线的统一定义,可得=e,可得|AF|+|BF|AC|+|BD|,即|AB|AC|+|BD|,以AB为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|)圆M到l的距离|MN|r,可得直线l与以AB为直径的圆相离故选:C【点评】本题给出椭圆的右焦点F,求以经过F的弦AB为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题12【答案】D【解析】解:双曲线:的a=1,b=2,c=双曲线的渐近线方程为y=x=2x;离心率e=故选 D二、填空题13【答案】2,3) 【解析】解:令t=3+4xx20,求得1x3,则y=,本题即求函数t在(1,3)上的减区间利用二次函数的性质可得函数t在(1,3)上的减区间为2,3),故答案为:2,3)14【答案】【解析】试题分析:因为中,由正弦定理得,又,即,所以,考点:正弦定理,三角形的面积【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答解三角形时三角形面积公式往往根据不同情况选用不同形式,等等15【答案】【解析】16【答案】 【解析】解:设剪成的小正三角形的边长为x,则:S=,(0x1)令3x=t,t(2,3),S=,当且仅当t=即t=2时等号成立;故答案为:17【答案】.【解析】18【答案】 【解析】解:复数=i1的模为=故答案为:【点评】本题考查了复数的运算法则、模的计算公式,属于基础题三、解答题19【答案】(1);(2)【解析】试题分析:(1)由于原不等式的解集为;(2)由设,原命题转化为又且考点:1、函数与不等式;2、对数与指数运算.【方法点晴】本题考查函数与不等式、对数与指数运算,涉及函数与不等式思想、数形结合思想和转化化高新,以及逻辑思维能力、等价转化能力、运算求解能力与能力,综合性较强,属于较难题型. 第一小题利用函数与不等式思想和转化化归思想将原不等式转化为,解得;第二小题利用数学结合思想和转化思想,将原命题转化为 ,进而求得:20【答案】 【解析】解:(1)由an+1=,可得a2=,a3=,a4=(2)猜测an=(nN*)下面用数学归纳法证明:当n=1时,左边=a1=a,右边=a,猜测成立假设当n=k(kN*)时猜测成立,即ak=则当n=k+1时,ak+1=故当n=k+1时,猜测也成立由,可知,对任意nN*都有an=成立21【答案】见解析。【解析】(1)设数列an的公差为d,依题意,2,2+d,2+4d成比数列,故有(2+d)2=2(2+4d),化简得d24d=0,解得d=0或4,当d=0时,an=2,当d=4时,an=2+(n1)4=4n2。(2)当an=2时,Sn=2n,显然2n60n+800,此时不存在正整数n,使得Sn60n+800成立,当an=4n2时,Sn=2n2,令2n260n+800,即n230n4000,解得n40,或n10(舍去),此时存在正整数n,使得Sn60n+800成立,n的最小值为41,综上,当an=2时,不存在满足题意的正整数n,当an=4n2时,存在满足题意的正整数n,最小值为4122【答案】()的单调递增区间是和,单调递减区间为;()【解析】试题分析:() 时,利用导数与单调性的关系,对函数求导,并与零作比较可得函数的单调区间;() 对函数求导,对参数分类讨论,利用函数的单调性求函数的最小值,使最小值小于或等于零,可得的取值范围试题解析:(1)当时,所以,由,得或,所以函数的单调递减区间为(2)要使在上有解,只要在区间上的最小值小于等于0因为,令,得,1 考点:导数与函数的单调性;分类讨论思想 23【答案】 【解析】解:()f(1)=1,f(2)=5,f(3)=13,f(4)=25,f(2)f(1)=4=41f(3)f(2)=8=42,f(4)f(3)=12=43,f(5)f(4)=16=44f(5)=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市交通规划与交通信息管理重点基础知识点
- 2025年软考网络管理员逆袭计划试题及答案
- 2024年海南省知识产权局下属事业单位真题
- 2024年海南省民政厅下属事业单位真题
- 2024年山东省淡水渔业研究院招聘笔试真题
- 数据库与网络管理关系试题及答案
- 2024年黄山新区妇产医院招聘笔试真题
- 2024年北海市合浦县司法局招聘笔试真题
- 行政法学策划能力试题及答案
- 未来科技变革下的公司战略与风险预测试题及答案
- 2023年心血管内科学考博真题
- 保温杯生产工艺流程
- GB/T 6482-2007凿岩用螺纹连接钎杆
- 理正深基坑算例
- GB 28375-2012混凝土结构防火涂料
- 公司休假销假单模板
- 《基于杜邦分析法的企业财务分析国内外文献综述》
- 全国高中数学联赛广东省预赛试题及解答
- DB33T 2226-2019 空气负(氧)离子观测与评价技术规范-纯图
- 高中政治教学的经验分享课件
- 办公室事故防范(典型案例分析)
评论
0/150
提交评论