已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷松溪县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 设有直线m、n和平面、,下列四个命题中,正确的是( )A若m,n,则mnB若m,n,m,n,则C若,m,则mD若,m,m,则m2 圆心为(1,1)且过原点的圆的方程是( )A2=1B2=1C2=2D2=23 在三棱柱中,已知平面,此三棱 柱各个顶点都在一个球面上,则球的体积为( ) A B C. D4 已知A=4,2a1,a2,B=a5,1a,9,且AB=9,则a的值是( )Aa=3Ba=3Ca=3Da=5或a=35 直线的倾斜角是( )ABCD6 函数y=ax+2(a0且a1)图象一定过点( )A(0,1)B(0,3)C(1,0)D(3,0)7 若函数y=f(x)是y=3x的反函数,则f(3)的值是( )A0B1CD38 设函数,其中,若存在唯一的整数,使得,则的取值范围是( )A B C D11119 已知f(x),g(x)都是R上的奇函数,f(x)0的解集为(a2,b),g(x)0的解集为(,),且a2,则f(x)g(x)0的解集为( )A(,a2)(a2,)B(,a2)(a2,)C(,a2)(a2,b)D(b,a2)(a2,)10记,那么ABCD11如图所示,阴影部分表示的集合是( )A(UB)AB(UA)BCU(AB)DU(AB)12已知命题“p:x0,lnxx”,则p为( )Ax0,lnxxBx0,lnxxCx0,lnxxDx0,lnxx二、填空题13已知条件p:x|xa|3,条件q:x|x22x30,且q是p的充分不必要条件,则a的取值范围是14已知圆C1:(x2)2+(y3)2=1,圆C2:(x3)2+(y4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值15设全集U=0,1,2,3,4,集合A=0,1,2,集合B=2,3,则(UA)B=16已知一组数据,的方差是2,另一组数据,()的标准差是,则 17设a抛掷一枚骰子得到的点数,则方程x2+ax+a=0有两个不等实数根的概率为18已知函数f(x)=,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是三、解答题19已知函数f(x)是定义在R上的奇函数,当x0时,.若,f(x-1)f(x),则实数a的取值范围为ABCD20提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20x200时,车流速度v是车流密度x的一次函数()当0x200时,求函数v(x)的表达式;()当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值(精确到1辆/小时) 21全集U=R,若集合A=x|3x10,B=x|2x7,(1)求AB,(UA)(UB); (2)若集合C=x|xa,AC,求a的取值范围22已知函数y=x+有如下性质:如果常数t0,那么该函数在(0,上是减函数,在,+)上是增函数(1)已知函数f(x)=x+,x1,3,利用上述性质,求函数f(x)的单调区间和值域;(2)已知函数g(x)=和函数h(x)=x2a,若对任意x10,1,总存在x20,1,使得h(x2)=g(x1)成立,求实数a的值 23如图,在三棱锥ABCD中,AB平面BCD,BCCD,E,F,G分别是AC,AD,BC的中点求证:(I)AB平面EFG;(II)平面EFG平面ABC24已知过点P(0,2)的直线l与抛物线C:y2=4x交于A、B两点,O为坐标原点(1)若以AB为直径的圆经过原点O,求直线l的方程;(2)若线段AB的中垂线交x轴于点Q,求POQ面积的取值范围 松溪县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D2 【答案】D【解析】解:由题意知圆半径r=,圆的方程为2=2故选:D【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题3 【答案】A【解析】 考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.4 【答案】B【解析】解:A=4,2a1,a2,B=a5,1a,9,且AB=9,2a1=9或a2=9,当2a1=9时,a=5,AB=4,9,不符合题意;当a2=9时,a=3,若a=3,集合B违背互异性;a=3故选:B【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题5 【答案】A【解析】解:设倾斜角为,直线的斜率为,tan=,0180,=30故选A【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握6 【答案】B【解析】解:由于函数y=ax (a0且a1)图象一定过点(0,1),故函数y=ax+2(a0且a1)图象一定过点(0,3),故选B【点评】本题主要考查指数函数的单调性和特殊点,属于基础题7 【答案】B【解析】解:指数函数的反函数是对数函数,函数y=3x的反函数为y=f(x)=log3x,所以f(9)=log33=1故选:B【点评】本题给出f(x)是函数y=3x(xR)的反函数,求f(3)的值,着重考查了反函数的定义及其性质,属于基础题8 【答案】D【解析】考点:函数导数与不等式1【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令将函数变为两个函数,将题意中的“存在唯一整数,使得在直线的下方”,转化为存在唯一的整数,使得在直线的下方.利用导数可求得函数的极值,由此可求得的取值范围. 9 【答案】A【解析】解:f(x),g(x)都是R上的奇函数,f(x)0的解集为(a2,b),g(x)0的解集为(,),且a2,f(x)0的解集为(b,a2),g(x)0的解集为(,),则不等式f(x)g(x)0等价为或,即a2x或xa2,故不等式的解集为(,a2)(a2,),故选:A【点评】本题主要考查不等式的求解,根据函数奇偶性的对称性的性质求出f(x)0和g(x)0的解集是解决本题的关键10【答案】B【解析】【解析1】,所以【解析2】,11【答案】A【解析】解:由图象可知,阴影部分的元素由属于集合A,但不属于集合B的元素构成,对应的集合表示为AUB故选:A12【答案】B【解析】解:因为特称命题的否定是全称命题,所以,命题“p:x0,lnxx”,则p为x0,lnxx故选:B【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查二、填空题13【答案】0,2 【解析】解:命题p:|xa|3,解得a3xa+3,即p=(a3,a+3);命题q:x22x30,解得1x3,即q=(1,3)q是p的充分不必要条件,qp,解得0a2,则实数a的取值范围是0,2故答案为:0,2【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题14【答案】54 【解析】解:如图,圆C1关于x轴的对称圆的圆心坐标A(2,3),半径为1,圆C2的圆心坐标(3,4),半径为3,|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,即:4=54故答案为:54【点评】本题考查圆的对称圆的方程的求法,考查两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力,考查数形结合的数学思想,属于中档题15【答案】2,3,4 【解析】解:全集U=0,1,2,3,4,集合A=0,1,2,CUA=3,4,又B=2,3,(CUA)B=2,3,4,故答案为:2,3,416【答案】2【解析】试题分析:第一组数据平均数为,考点:方差;标准差17【答案】 【解析】解:a是甲抛掷一枚骰子得到的点数,试验发生包含的事件数6,方程x2+ax+a=0 有两个不等实根,a24a0,解得a4,a是正整数,a=5,6,即满足条件的事件有2种结果,所求的概率是=,故答案为:【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键18【答案】(0,1) 【解析】解:画出函数f(x)的图象,如图示:令y=k,由图象可以读出:0k1时,y=k和f(x)有3个交点,即方程f(x)=k有三个不同的实根,故答案为(0,1)【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题三、解答题19【答案】B【解析】当x0时,f(x)=,由f(x)=x3a2,x2a2,得f(x)a2;当a2x2a2时,f(x)=a2;由f(x)=x,0xa2,得f(x)a2。当x0时,。函数f(x)为奇函数,当x0时,。对xR,都有f(x1)f(x),2a2(4a2)1,解得:。故实数a的取值范围是。20【答案】 【解析】解:() 由题意:当0x20时,v(x)=60;当20x200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为()依题并由()可得当0x20时,f(x)为增函数,故当x=20时,其最大值为6020=1200当20x200时,当且仅当x=200x,即x=100时,等号成立所以,当x=100时,f(x)在区间(20,200上取得最大值综上所述,当x=100时,f(x)在区间0,200上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时答:() 函数v(x)的表达式() 当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时 21【答案】 【解析】解:(1)A=x|3x10,B=x|2x7,AB=3,7;AB=(2,10);(CUA)(CUB)=(,3)10,+);(2)集合C=x|xa,若AC,则a3,即a的取值范围是a|a322【答案】 【解析】解:(1)由已知可以知道,函数f(x)在x1,2上单调递减,在x2,3上单调递增,f(x)min=f(2)=2+2=4,又f(1)=1+4=5,f(3)=3+=;f(1)f(3)所以f(x)max=f(1)=5所以f(x)在x1,3的值域为4,5(2)y=g(x)=2x+1+8设=2x+1,x0,1,13,则y=8,由已知性质得,当1u2,即0x时,g(x)单调递减,所以递减区间为0,;当2u3,即x1时,g(x)单调递增,所以递增区间为,1;由g(0)=3,g()=4,g(1)=,得g(x)的值域为4,3因为h(x)=x2a为减函数,故h(x)12a,2a,x0,1根据题意,g(x)的值域为h(x)的值域的子集,从而有,所以a= 23【答案】 【解析】证明:(I)在三棱锥ABCD中,E,G分别是AC,BC的中点所以ABEG因为EG平面EFG,AB平面EFG所以AB平面EFG(II)因为AB平面BCD,CD平面BCD所以ABCD又BCCD且ABBC=B所以CD平面ABC又E,F分别是AC,AD,的中点所以CDEF所以EF平面ABC又EF平面EFG,所以平面平面EFG平面ABC【点评】本题考查线面平行,考查面面垂直,掌握线面平行,面面垂直的判定是关键24【答案】 【解析】解:(1)设直线AB的方程为y=kx+2(k0),设A(x1,y1),B(x2,y2),由,得k2x2+(4k4)x+4=0,则由=(4k4)216k2=32k+160,得k,=,所以y1y2=(kx1+2)(kx2+2)=k2x1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 标准论文格式及字体
- 本科生外语学位论文写作规范
- 供水管理论文范文
- 企业盈利能力分析以北京小米科技有限责任公司为例
- 西南大学本科毕业论文(设计)规范化要求【模板】
- 毕业论文评阅书评语(标准版)
- 历史学毕业论文怎么写(全面分析)
- 工程合同一般是几分(3篇)
- 文献检索期末复习选择题
- 企业财务管理存在的问题及对策的研究意义
- 2025年网格员笔试真题及答案解析
- 2025青岛高新区投资开发集团有限公司人员招聘总及考察环节笔试历年备考题库附带答案详解试卷3套
- 完整版考试人工智能训练师三级题库练习试卷附答案
- 可能性的概念课件
- 2025品质工作总结
- 2025年大学《林学-森林经理学》考试模拟试题及答案解析
- 中国球墨铸铁管配件行业市场规模及未来投资方向研究报告
- 高一历史上学期期末冲刺模拟卷02-统编版高一《历史》上学期期末考点大串讲
- 2025眼科行业发展前景研究报告
- 工厂天然气安全培训课件
- 2025秋南水北调生态环保工程有限公司招聘(15人)笔试考试备考试题及答案解析
评论
0/150
提交评论