




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
禄丰县一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 函数f(x)=3x+x的零点所在的一个区间是( )A(3,2)B(2,1)C(1,0)D(0,1)2 在平面直角坐标系中,向量(1,2),(2,m),若O,A,B三点能构成三角形,则()A B C D3 设是两个不同的平面,是一条直线,以下命题正确的是( )A若,则 B若, ,则 C若,则 D若,则4 已知点P(x,y)的坐标满足条件,(k为常数),若z=3x+y的最大值为8,则k的值为( )ABC6D65 一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )A. B.C. D. 【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力6 在等差数列中,首项公差,若,则 A、B、 C、D、7 函数y=+的定义域是( )Ax|x1Bx|x1且x3Cx|x1且x3Dx|x1且x38 特称命题“xR,使x2+10”的否定可以写成( )A若xR,则x2+10BxR,x2+10CxR,x2+10DxR,x2+109 设抛物线C:y2=2px(p0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( )Ay2=4x或y2=8xBy2=2x或y2=8xCy2=4x或y2=16xDy2=2x或y2=16x10在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( )ABCD11设集合A=x|x2|2,xR,B=y|y=x2,1x2,则R(AB)等于( )ARBx|xR,x0C0D12已知双曲线=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的渐近线方程为y=x,则该双曲线的方程为( )A=1By2=1Cx2=1D=1二、填空题13已知函数f(x)=sinxcosx,则=14某公司租赁甲、乙两种设备生产两类产品,甲种设备每天能生产类产品5件和类产品10件,乙种设备每天能生产类产品6件和类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产类产品50件,类产品140件,所需租赁费最少为_元.15对于函数,“的图象关于y轴对称”是“”的 条件 (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)16一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为_17已知函数,则 ,的值域为 【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力.18圆心在原点且与直线相切的圆的方程为_ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.三、解答题19已知p:,q:x2(a2+1)x+a20,若p是q的必要不充分条件,求实数a的取值范围20如图1,ACB=45,BC=3,过动点A作ADBC,垂足D在线段BC上且异于点B,连接AB,沿AD将ABD折起,使BDC=90(如图2所示),(1)当BD的长为多少时,三棱锥ABCD的体积最大;(2)当三棱锥ABCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得ENBM,并求EN与平面BMN所成角的大小。21已知函数f(x)=xlnx+ax(aR)()若a=2,求函数f(x)的单调区间;()若对任意x(1,+),f(x)k(x1)+axx恒成立,求正整数k的值(参考数据:ln2=0.6931,ln3=1.0986) 22已知集合A=x|1x3,集合B=x|2mx1m(1)若AB,求实数m的取值范围;(2)若AB=,求实数m的取值范围23已知函数f(x)=|xa|()若不等式f(x)2的解集为0,4,求实数a的值;()在()的条件下,若x0R,使得f(x0)+f(x0+5)m24m,求实数m的取值范围24已知函数上为增函数,且(0,),mR(1)求的值;(2)当m=0时,求函数f(x)的单调区间和极值;(3)若在上至少存在一个x0,使得f(x0)g(x0)成立,求m的取值范围 禄丰县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:由函数f(x)=3x+x可知函数f(x)在R上单调递增,又f(1)=10,f(0)=30+0=10,f(1)f(0)0,可知:函数f(x)的零点所在的区间是(1,0)故选:C【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题2 【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。若O,A,B三点共线,有:-m=4,m=-4故要使O,A,B三点不共线,则。故答案为:B3 【答案】111【解析】考点:线线,线面,面面的位置关系4 【答案】 B【解析】解:画出x,y满足的可行域如下图:z=3x+y的最大值为8,由,解得y=0,x=,(,0)代入2x+y+k=0,k=,故选B【点评】如果约束条件中含有参数,可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x,y后,即可求出参数的值5 【答案】B 6 【答案】A【解析】, 7 【答案】D【解析】解:由题意得:,解得:x1或x3,故选:D【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题8 【答案】D【解析】解:命题“xR,使x2+10”是特称命题否定命题为:xR,都有x2+10故选D9 【答案】 C【解析】解:抛物线C方程为y2=2px(p0),焦点F坐标为(,0),可得|OF|=,以MF为直径的圆过点(0,2),设A(0,2),可得AFAM,RtAOF中,|AF|=,sinOAF=,根据抛物线的定义,得直线AO切以MF为直径的圆于A点,OAF=AMF,可得RtAMF中,sinAMF=,|MF|=5,|AF|=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x故选:C方法二:抛物线C方程为y2=2px(p0),焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5,4),代入抛物线方程得p210p+16=0,所以p=2或p=8所以抛物线C的方程为y2=4x或y2=16x故答案C【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题10【答案】C【解析】解:如图所示,BCD是圆内接等边三角形,过直径BE上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD的内切圆的半径为1,显然当弦为CD时就是BCD的边长,要使弦长大于CD的长,就必须使圆心O到弦的距离小于|OF|,记事件A=弦长超过圆内接等边三角形的边长=弦中点在内切圆内,由几何概型概率公式得P(A)=,即弦长超过圆内接等边三角形边长的概率是故选C【点评】本题考查了几何概型的运用;关键是找到事件A对应的集合,利用几何概型公式解答11【答案】B【解析】解:A=0,4,B=4,0,所以AB=0,R(AB)=x|xR,x0,故选B12【答案】B【解析】解:已知抛物线y2=4x的焦点和双曲线的焦点重合,则双曲线的焦点坐标为(,0),即c=,又因为双曲线的渐近线方程为y=x,则有a2+b2=c2=10和=,解得a=3,b=1所以双曲线的方程为:y2=1故选B【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用属于基础题二、填空题13【答案】 【解析】解:函数f(x)=sinxcosx=sin(x),则=sin()=,故答案为:【点评】本题主要考查两角差的正弦公式,属于基础题14【答案】【解析】111试题分析:根据题意设租赁甲设备,乙设备,则,求目标函数的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值.1111考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产天,该公司所需租赁费为元,则,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值.15【答案】必要而不充分【解析】试题分析:充分性不成立,如图象关于y轴对称,但不是奇函数;必要性成立,所以的图象关于y轴对称.考点:充要关系【名师点睛】充分、必要条件的三种判断方法1.定义法:直接判断“若p则q”、“若q则p”的真假并注意和图示相结合,例如“pq”为真,则p是q的充分条件2.等价法:利用pq与非q非p,qp与非p非q,pq与非q非p的等价关系,对于条件或结论是否定式的命题,一般运用等价法3.集合法:若AB,则A是B的充分条件或B是A的必要条件;若AB,则A是B的充要条件16【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】正方体中,BC中点为E,CD中点为F,则截面为即截去一个三棱锥其体积为:所以该几何体的体积为:故答案为:17【答案】,. 【解析】18【答案】【解析】由题意,圆的半径等于原点到直线的距离,所以,故圆的方程为.三、解答题19【答案】 【解析】解:由p: 1x2,方程x2(a2+1)x+a2=0的两个根为x=1或x=a2,若|a|1,则q:1xa2,此时应满足a22,解得1|a|,当|a|=1,q:x,满足条件,当|a|1,则q:a2x1,此时应满足|a|1,综上【点评】本题主要考查复合命题的应用,以及充分条件和必要条件的应用,结合一元二次不等式的解法是解决本题的关键20【答案】(1)1(2)60【解析】(1)设BD=x,则CD=3xACB=45,ADBC,AD=CD=3x折起前ADBC,折起后ADBD,ADCD,BDDC=DAD平面BCDVABCD=ADSBCD=(3x)x(3x)=(x36x2+9x)设f(x)=(x36x2+9x) x(0,3),f(x)=(x1)(x3),f(x)在(0,1)上为增函数,在(1,3)上为减函数当x=1时,函数f(x)取最大值当BD=1时,三棱锥ABCD的体积最大;(2)以D为原点,建立如图直角坐标系Dxyz,21【答案】 【解析】解:(I)a=2时,f(x)=xlnx2x,则f(x)=lnx1令f(x)=0得x=e,当0xe时,f(x)0,当xe时,f(x)0,f(x)的单调递减区间是(0,e),单调递增区间为(e,+)(II)若对任意x(1,+),f(x)k(x1)+axx恒成立,则xlnx+axk(x1)+axx恒成立,即k(x1)xlnx+axax+x恒成立,又x10,则k对任意x(1,+)恒成立,设h(x)=,则h(x)=设m(x)=xlnx2,则m(x)=1,x(1,+),m(x)0,则m(x)在(1,+)上是增函数m(1)=10,m(2)=ln20,m(3)=1ln30,m(4)=2ln40,存在x0(3,4),使得m(x0)=0,当x(1,x0)时,m(x)0,即h(x)0,当x(x0,+)时,m(x)0,h(x)0,h(x)在(1,x0)上单调递减,在(x0,+)上单调递增,h(x)的最小值hmin(x)=h(x0)=m(x0)=x0lnx02=0,lnx0=x02h(x0)=x0khmin(x)=x03x04,k3k的值为1,2,3【点评】本题考查了利用导数研究函数的单调性,函数的最值,函数恒成立问题,构造函数求出h(x)的最小值是解题关键,属于难题 22【答案】 【解析】解:(1)由AB知:,得m2,即实数m的取值范围为(,2;(2)由AB=,得:若2m1m即m时,B=,符合题意;若2m1m即m时,需或,得0m或,即0m,综上知m0即实数m的取值范围为0,+)【点评】本题主要考查集合的包含关系判断及应用,交集及其运算解答(2)题时要分类讨论,以防错解或漏解23【答案】 【解析】解:()|xa|2,a2xa+2,f(x)2的解集为0,4,a=2()f(x)+f(x+5)=|x2|+|x+3|(x2)(x+3)|=5,x0R,使得,即成立,4m+m2f(x)+f(x+5)min,即4m+m25,解得m5,或m1,实数m的取值范围
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025西安太白学校实习教师招聘备考考试题库附答案解析
- 常州运营商精准营销方案
- 2025西安未央区医学院社区卫生服务中心招聘(4人)备考考试题库附答案解析
- 2025年淮南淮河能源控股集团2026届高技能人才校园招聘500人备考考试题库附答案解析
- 2026中国农业银行农银理财有限责任公司校园招聘15人备考考试题库附答案解析
- 金蝶K3 Cloud实训报告总结
- 运动安全与伤害防治
- 家居行业四月营销方案
- 工厂安全培训感想课件
- 存储过程跨云协同-洞察及研究
- 辽沈战役精简课件
- 河道工程基础井点降水方案
- 2025重庆忠县机关事业单位临聘4人备考考试题库附答案解析
- 国庆节安全培训会议内容课件
- 2025年机械伤害事故救援与现场急救培训试题及答案
- 2025年职业技能医疗救护员理论知识-理论知识参考题库含答案解析(5卷)
- 零碳工厂培训课件
- 2025年高考全国一卷数学真题(原卷版)
- 2025年护士资格证真题附答案详解
- 《泌尿系统感染:2025EAU指南》解读
- 2025至2030年中国保障房建设行业市场发展现状及投资方向研究报告
评论
0/150
提交评论