已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题09 解三角形1.中,角的对边分别是,已知,则( )A B C D【答案】C【解析】试题分析:由,由余弦定理得,即,所以,故选C考点:余弦定理2. 中,若,则( )A BC是直角三角形 D或【答案】D【解析】考点:解三角形3.设锐角的三个内角,的对边分别为,成等比数列,且,则角( )A B C D【答案】B【解析】考点:1、等比数列的性质;2、正弦定理及特殊角的三角函数. 4.在中,分别是,的对边长,已知,且,则实数 【答案】【解析】试题分析:因为,两边平方可得即,解得: ,而可以变形为,即, 所以,故答案为.考点:1、余弦定理的应用;2、同角三角函数之间的关系. 5.如图所示,为测一树的高度,在地面上选取两点,从两点分别测得树尖的仰角为,且两点间的距离为,则树的高度为( )A B C D【答案】A【解析】试题分析:在中,,由正弦定理得:,树的高度为, 故选A.考点:1、仰角的定义及两角和的正弦公式;2、阅读能力、建模能力及正弦定理的应用.6.在中,为边上一点,若的面积为,则 . 【答案】【解析】考点:1、余弦定理的应用;2、三角形内角和定理及三角形面积公式. 7.在中,内角的对边分别是,若,则为( )A B C D【答案】A 【解析】考点:1、正弦定理及余弦定理;2、同角三角函数之间的关系.8.中三边上的高的大小依次为,则为( )A锐角三角形 B直角三角形 C.钝角三角形 D不存在这样的三角形【答案】C 【解析】试题分析:设中三边分别为,设,因为,故能构成三角形,取大角,所以为钝角,所以为钝角三角形,故选C. 考点:1、三角形的形状判断;2、余弦定理的应用.9.在中,角,所对的边分别为,且,成等差数列,则角的大小是_.【答案】 【解析】试题分析:因为成等差数列,又由正弦定理,得,为的内角,即为的内角,为的内角,综上所述,结论是,故答案为. 考点:1、等差数列的性质;2、正弦定理、两角和的正弦公式;3三角形内角和定理及诱导公式.10. 中, 边上的中线等于,且,则 【答案】【解析】 考点:余弦定理的应用.11.在中,分别是角的对边,且,则_【答案】【解析】试题分析:由正弦定理得,化简得,即,所以在中,.考点:正弦定理、三角恒等变换12.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物业安装安全监控合同
- 易会议服务合同范本
- 招募项目加盟协议书
- 父母首付借款协议书
- 无效民事协议书范本
- 瑜伽教练劳务协议书
- 环保公厕订购协议书
- 弃养免责协议书范本
- 甲乙丙公司合同范本
- 强英合同鸭养殖协议
- 德勤内部审计培训课件
- GB/T 43565-2023中小学合成材料面层篮球场地
- 纯电动汽车的结构
- 政务信息写作(方法大全-案例详实-个人心得)
- 消毒供应中心技能考核操作评分标准
- 设施蔬菜优质高效栽培技术课件
- GA/T 1567-2019城市道路交通隔离栏设置指南
- 建筑工程制图设备施工图课件
- 航天器用j30jh系列微型矩形电连接器
- translated-2022+中国专家共识:危重症患者的血糖管理(中文版)
- 40篇英语短文搞定高考3500个单词(全部含翻译-重点解析)
评论
0/150
提交评论