中山区高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
中山区高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
中山区高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
中山区高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
中山区高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中山区高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 给出函数,如下表,则的值域为( ) A B C D以上情况都有可能2 已知ab0,那么下列不等式成立的是( )AabBa+cb+cC(a)2(b)2D3 命题“若ab,则a8b8”的逆否命题是( )A若ab,则a8b8B若a8b8,则abC若ab,则a8b8D若a8b8,则ab4 对一切实数x,不等式x2+a|x|+10恒成立,则实数a的取值范围是( )A(,2)BD上是减函数,那么b+c( )A有最大值B有最大值C有最小值D有最小值5 抛物线x=4y2的准线方程为( )Ay=1By=Cx=1Dx=6 设函数f(x)在x0处可导,则等于( )Af(x0)Bf(x0)Cf(x0)Df(x0)7 在复平面内,复数所对应的点为,是虚数单位,则( )A B C D 8 双曲线的渐近线方程是( )ABCD9 若命题p:x0R,sinx0=1;命题q:xR,x2+10,则下列结论正确的是( )Ap为假命题Bq为假命题Cpq为假命题Dpq真命题10复数z=(mR,i为虚数单位)在复平面上对应的点不可能位于( )A第一象限B第二象限C第三象限D第四象限11若命题p:xR,2x210,则该命题的否定是( )AxR,2x210 BxR,2x210CxR,2x210DxR,2x21012从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )ABCD二、填空题13将一张坐标纸折叠一次,使点与点重合,且点与点重合,则的值是 14经过A(3,1),且平行于y轴的直线方程为15已知面积为的ABC中,A=若点D为BC边上的一点,且满足=,则当AD取最小时,BD的长为16已知实数,满足,目标函数的最大值为4,则_【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力17若数列an满足:存在正整数T,对于任意的正整数n,都有an+T=an成立,则称数列an为周期为T的周期数列已知数列an满足:a1=m (ma ),an+1=,现给出以下三个命题:若 m=,则a5=2;若 a3=3,则m可以取3个不同的值;若 m=,则数列an是周期为5的周期数列其中正确命题的序号是18设向量a(1,1),b(0,t),若(2ab)a2,则t_三、解答题19如图,在四棱柱ABCDA1B1C1D1中,底面ABCD是矩形,且AD=2CD=2,AA1=2,A1AD=若O为AD的中点,且CDA1O()求证:A1O平面ABCD;()线段BC上是否存在一点P,使得二面角DA1AP为?若存在,求出BP的长;不存在,说明理由20(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的参数方程为(为参数),过点的直线交曲线于两点. (1)将曲线的参数方程化为普通方程;(2)求的最值.21已知f(x)是定义在1,1上的奇函数,f(1)=1,且若a、b1,1,a+b0,恒有0,(1)证明:函数f(x)在1,1上是增函数;(2)解不等式;(3)若对x1,1及a1,1,不等式f(x)m22am+1恒成立,求实数m的取值范围22已知函数f(x)=ax3+bx23x在x=1处取得极值求函数f(x)的解析式23已知集合A=x|a1x2a+1,B=x|0x1(1)若a=,求AB(2)若AB=,求实数a的取值范围 24(本小题满分12分)设:实数满足不等式,:函数无极值点.(1)若“”为假命题,“”为真命题,求实数的取值范围;(2)已知“”为真命题,并记为,且:,若是的必要不充分条件,求正整数的值中山区高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】试题分析:故值域为.考点:复合函数求值2 【答案】C【解析】解:ab0,ab0,(a)2(b)2,故选C【点评】本题主要考查不等式的基本性质的应用,属于基础题3 【答案】D【解析】解:根据逆否命题和原命题之间的关系可得命题“若ab,则a8b8”的逆否命题是:若a8b8,则ab故选D【点评】本题主要考查逆否命题和原命题之间的关系,要求熟练掌握四种命题之间的关系比较基础4 【答案】B【解析】解:由f(x)在上是减函数,知f(x)=3x2+2bx+c0,x,则15+2b+2c0b+c故选B5 【答案】D【解析】解:抛物线x=4y2即为y2=x,可得准线方程为x=故选:D6 【答案】C【解析】解: =f(x0),故选C7 【答案】D 【解析】解析:本题考查复数的点的表示与复数的乘法运算,选D8 【答案】B【解析】解:双曲线标准方程为,其渐近线方程是=0,整理得y=x故选:B【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程属于基础题9 【答案】A【解析】解:时,sinx0=1;x0R,sinx0=1;命题p是真命题;由x2+10得x21,显然不成立;命题q是假命题;p为假命题,q为真命题,pq为真命题,pq为假命题;A正确故选A【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对R满足x20,命题p,pq,pq的真假和命题p,q真假的关系10【答案】C【解析】解:z=+i,当1+m0且1m0时,有解:1m1;当1+m0且1m0时,有解:m1;当1+m0且1m0时,有解:m1;当1+m0且1m0时,无解;故选:C【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题11【答案】C【解析】解:命题p:xR,2x210,则其否命题为:xR,2x210,故选C;【点评】此题主要考查命题否定的定义,是一道基础题;12【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=故选:A【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件二、填空题13【答案】【解析】考点:点关于直线对称;直线的点斜式方程.14【答案】x=3 【解析】解:经过A(3,1),且平行于y轴的直线方程为:x=3故答案为:x=315【答案】 【解析】解:AD取最小时即ADBC时,根据题意建立如图的平面直角坐标系,根据题意,设A(0,y),C(2x,0),B(x,0)(其中x0),则=(2x,y),=(x,y),ABC的面积为,=18,=cos=9,2x2+y2=9,ADBC,S=xy=3,由得:x=,故答案为:【点评】本题考查了三角形的面积公式、利用平面向量来解三角形的知识16【答案】【解析】作出可行域如图所示:作直线:,再作一组平行于的直线:,当直线经过点时,取得最大值,所以,故17【答案】 【解析】解:对于由an+1=,且a1=m=1,所以,1,a5=2 故正确;对于由a3=3,若a3=a21=3,则a2=4,若a11=4,则a1=5=m若,则若a11a1=,若0a11则a1=3,不合题意所以,a3=2时,m即a1的不同取值由3个故正确;若a1=m=1,则a2=,所a3=1,a4=故在a1=时,数列an是周期为3的周期数列,错;故答案为:【点评】本题主要考查新定义题目,属于创新性题目,但又让学生能有较大的数列的知识应用空间,是较好的题目18【答案】【解析】(2ab)a(2,2t)(1,1)21(2t)(1)4t2,t2.答案:2三、解答题19【答案】 【解析】满分(13分)()证明:A1AD=,且AA1=2,AO=1,A1O=,(2分)+AD2=AA12,A1OAD(3分)又A1OCD,且CDAD=D,A1O平面ABCD(5分)()解:过O作OxAB,以O为原点,建立空间直角坐标系Oxyz(如图),则A(0,1,0),A1(0,0,),(6分)设P(1,m,0)m1,1,平面A1AP的法向量为=(x,y,z),=, =(1,m+1,0),且取z=1,得=(8分)又A1O平面ABCD,A1O平面A1ADD1平面A1ADD1平面ABCD又CDAD,且平面A1ADD1平面ABCD=AD,CD平面A1ADD1不妨设平面A1ADD1的法向量为=(1,0,0)(10分)由题意得=,(12分)解得m=1或m=3(舍去)当BP的长为2时,二面角DA1AP的值为(13分)【点评】本小题主要考查直线与平面的位置关系,二面角的大小等基础知识,考查空间想象能力、推理论证能力和运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想20【答案】(1).(2)的最大值为,最小值为.【解析】试题解析:解:(1)曲线的参数方程为(为参数),消去参数得曲线的普通方程为 (3分)(2)由题意知,直线的参数方程为(为参数),将代入得 (6分)设对应的参数分别为,则.的最大值为,最小值为. (10分)考点:参数方程化成普通方程21【答案】 【解析】解:(1)证明:任取x1、x21,1,且x1x2,则f(x1)f(x2)=f(x1)+f(x2)0,即0,x1x20,f(x1)f(x2)0则f(x)是1,1上的增函数;(2)由于f(x)是1,1上的增函数,不等式即为1x+1,解得x1,即解集为,1);(3)要使f(x)m22am+1对所有的x1,1,a1,1恒成立,只须f(x)maxm22am+1,即1m22am+1对任意的a1,1恒成立,亦即m22am0对任意的a1,1恒成立令g(a)=2ma+m2,只须,解得m2或m2或m=0,即为所求22【答案】 【解析】解:(1)f(x)=3ax2+2bx3,依题意,f(1)=f(1)=0,即,解得a=1,b=0f(x)=x33x【点评】本题考查了导数和函数极值的问题,属于基础题23【答案】【解析】解:(1)当a=时,A=x|,B=x|0x1AB=x|0x1(2)若AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论