2019版八下数学第四章因式分解测试题(有解析)_第1页
2019版八下数学第四章因式分解测试题(有解析)_第2页
2019版八下数学第四章因式分解测试题(有解析)_第3页
2019版八下数学第四章因式分解测试题(有解析)_第4页
2019版八下数学第四章因式分解测试题(有解析)_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2019版八下数学第四章因式分解测试题(有解析)因式分解1.因式分解的方法名称 提公因式法 平方差公式 完全平方公式公式 ma+mb+mc=m(a+b+c) a2-b2=(a+b)(a-b) a22ab+b2=(ab)2项数 最少两项 两项 三项适用条件 有公因式 平方差形式(1)两项.(2)每项都是平方的形式.(3)两项符号相反 完全平方形式(1)三项.(2)两项是平方的形式.(3)另一项是两数乘积的二倍【例1】分解因式:2x2-6x=_.【标准解答】两项中都含有公因式2x,提取公因式2x得2x2-6x=2x(x-3).答案:2x(x-3)【例2】分解因式:4x2-1=_.【标准解答】4x2-1=(2x)2-12=(2x+1)(2x-1).答案:(2x+1)(2x-1)【例3】分解因式:(a+b)3-4(a+b)=_.【标准解答】(a+b)3-4(a+b)=(a+b)=(a+b)(a+b+2)(a+b-2).答案:(a+b)(a+b+2)(a+b-2)【例4】分解因式:a3-10a2+25a=_.【标准解答】a3-10a2+25a=a(a2-10a+25)=a(a-5)2.答案:a(a-5)2【例5】分解因式:(2a-b)2+8ab =_.【标准解答】(2a-b)2+8ab=4a2-4ab+b2+8ab=4a2+4ab+b2=(2a+b)2.答案:(2a+b)21.下列各式能用完全平方公式进行分解因式的是()A.x2+1 B.x2+2x-1C.x2+x+1 D.x2+4x+42.分解因式:(x+3)2-(x+3)=_.3.在实数范围内因式分解x4-4=_.4.因式分解:x3y2-x5=_.5.分解因式:-a3+a2b- ab2=_.6.给出三个多项式 x2+x-1, x2+3x+1, x2-x,请你选择其中两个进行加法运算,并把结果因式分解.2.分解因式与整体代入求值(1)利用平方差公式分解因式,再整体代入求值通过对已知条件或对所求代数式利用平方差公式进行因式分解,再整体代入求值.【例1】若m2-n2=6,且m-n=2,则m+n=_.【标准解答】m2-n2=(m+n)(m-n)=2(m+n)=6,m+n=3.答案:3(2)利用完全平方公式分解因式,再整体代入求值通过对已知条件利用完全平方公式分解因式,对所求代数式化简分解因式,找出已知条件与所求代数式之间的关系,然后整体代入求值.【例2】已知a2+2ab+b2=0,求代数式a(a+4b)-(a+2b)(a-2b)的值.【标准解答】a2+2ab+b2=0,a+b=0,又a(a+4b)-(a+2b)(a-2b)=a2+4ab-(a2-4b2)=4ab+4b2=4b(a+b).原式=4b0=0.1.若m-n=2,m+n=5,则m2-n2的值为_.2.已知m+n=3,求2m2+4mn+2n2-6的值.3.因式分解的解题技巧(1)通过加减变形,进行因式分解分解某些多项式,有时需要加上并减去一个适当的项,从而在多项式的值保持不变的前提下达到因式分解的目的.【例1】分解因式:4a4+1.【标准解答】本题只需在原式中加上并减去4a2,即能运用完全平方公式和平方差公式进行分解.原式=4a4+1+4a2-4a2=(4a4+4a2+1)-4a2=(2a2+1)2-(2a)2=(2a2+2a+1)(2a2-2a+1).(2)通过拆项变形,进行因式分解当多项式的因式分解遇到困难时,有时也可考虑采用拆项的方法,将多项式中的某一项进行拆分,然后将新得到的多项式进行适当组合,同样可以实现因式分解.【例2】分解因式:2x3+3x2-1.【标准解答】将3x2拆成2x2+x2,再将2x2与2x3组合,x2与-1组合,则能运用提取公因式法与平方差公式进行分解.原式=2x3+2x2+x2-1=(2x3+2x2)+(x2-1)=2x2(x+1)+(x+1)(x-1)=(x+1)(2x2+x-1).(3)通过换元变形,进行因式分解当多项式的次数较高,且其中含有相同的多项式因子时,采用换元法就能降低原多项式的次数,从而简化因式分解操作.【例3】分解因式:(a2+2a)(a2+2a+4)+4.【标准解答】设y=a2+2a,则原式=y(y+4)+4=y2+4y+4=(y+2)2,(a2+2a)(a2+2a+4)+4=(a2+2a+2)2.(4)由整式的乘法可知,(x+p)(x+q)=x2+(p+q)x+pq,根据因式分解与整式乘法的关系可得,x2+(p+q)x+pq=(x+p)(x+q).因此可以将某些二次项系数是1的二次三项式分解因式.例如,将式子x2+3x+2分解因式,这个式子的二次项系数是1,常数项2=12,一次项系数3=1+2,因此这是一个符合x2+(p+q)x+pq型的式子,利用这个关系可得x2+3x+2=(x+1)(x+2).【例4】利用这种方法,将下列多项式分解因式.(1)x2+9x+20.(2)x2-7x+12.【标准解答】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论