




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷东港市第三中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 定义在(0,+)上的函数f(x)满足:0,且f(2)=4,则不等式f(x)0的解集为( )A(2,+)B(0,2)C(0,4)D(4,+)2 已知a,b是实数,则“a2bab2”是“”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件 3 设函数f(x)=的最小值为1,则实数a的取值范围是( )Aa2Ba2CaDa4 已知函数f(2x+1)=3x+2,且f(a)=2,则a的值等于( )A8B1C5D15 设平面与平面相交于直线m,直线a在平面内,直线b在平面内,且bm,则“”是“ab”的( )A必要不充分条件B充分不必要条件C充分必要条件D既不充分也不必要条件6 现要完成下列3项抽样调查:从10盒酸奶中抽取3盒进行食品卫生检查科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本较为合理的抽样方法是( )A简单随机抽样,系统抽样,分层抽样B简单随机抽样,分层抽样,系统抽样C系统抽样,简单随机抽样,分层抽样D分层抽样,系统抽样,简单随机抽样7 i是虚数单位,计算i+i2+i3=( )A1B1CiDi8 已知正方体的不在同一表面的两个顶点A(1,2,1),B(3,2,3),则正方体的棱长等于( )A4B2CD29 已知向量=(1,),=(,x)共线,则实数x的值为( )A1BC tan35Dtan3510已知f(x)为定义在(0,+)上的可导函数,且f(x)xf(x)恒成立,则不等式x2f()f(x)0的解集为( )A(0,1)B(1,2)C(1,+)D(2,+)11设函数f(x)在x0处可导,则等于( )Af(x0)Bf(x0)Cf(x0)Df(x0)12已知函数f(x)=2x,则f(x)=( )A2xB2xln2C2x+ln2D二、填空题13如图,已知,是异面直线,点,且;点,且.若,分别是,的中点,则与所成角的余弦值是_.【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.14把函数y=sin2x的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为15函数f(x)=2ax+2a+1的图象经过四个象限的充要条件是16函数f(x)=ax+4的图象恒过定点P,则P点坐标是17抛物线y2=8x上一点P到焦点的距离为10,则P点的横坐标为18()0+(2)3 =三、解答题19如图,边长为2的等边PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点()证明:AMPM; ()求点D到平面AMP的距离20已知函数f(x)=(1)求f(x)的定义域;(2)判断并证明f(x)的奇偶性;(3)求证:f()=f(x)21(本小题12分)在多面体中,四边形与是边长均为正方形,平面,平面,且(1)求证:平面平面;(2)若,求三棱锥的体积 【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,间在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想22已知函数f(x)=()求函数f(x)单调递增区间;()在ABC中,角A,B,C的对边分别是a,b,c,且满足(2ac)cosB=bcosC,求f(A)的取值范围23已知f(x)=(1+x)m+(1+2x)n(m,nN*)的展开式中x的系数为11(1)求x2的系数取最小值时n的值(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和24已知函数,且()求的解析式;()若对于任意,都有,求的最小值;()证明:函数的图象在直线的下方东港市第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:定义在(0,+)上的函数f(x)满足:0f(2)=4,则2f(2)=8,f(x)0化简得,当x2时,成立故得x2,定义在(0,+)上不等式f(x)0的解集为(0,2)故选B【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解属于中档题2 【答案】C【解析】解:由a2bab2得ab(ab)0,若ab0,即ab,则ab0,则成立,若ab0,即ab,则ab0,则a0,b0,则成立,若则,即ab(ab)0,即a2bab2成立,即“a2bab2”是“”的充要条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键3 【答案】C【解析】解:当x时,f(x)=4x323=1,当x=时,取得最小值1;当x时,f(x)=x22x+a=(x1)2+a1,即有f(x)在(,)递减,则f(x)f()=a,由题意可得a1,解得a故选:C【点评】本题考查分段函数的运用:求最值,主要考查指数函数的单调性和二次函数的值域的求法,属于中档题4 【答案】B【解析】解:函数f(2x+1)=3x+2,且f(a)=2,令3x+2=2,解得x=0,a=20+1=1故选:B5 【答案】B【解析】解:bm,当,则由面面垂直的性质可得ab成立,若ab,则不一定成立,故“”是“ab”的充分不必要条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键6 【答案】A【解析】解;观察所给的四组数据,个体没有差异且总数不多可用随机抽样法,简单随机抽样,将总体分成均衡的若干部分指的是将总体分段,在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号,系统抽样,个体有了明显了差异,所以选用分层抽样法,分层抽样,故选A7 【答案】A【解析】解:由复数性质知:i2=1故i+i2+i3=i+(1)+(i)=1故选A【点评】本题考查复数幂的运算,是基础题8 【答案】A【解析】解:正方体中不在同一表面上两顶点A(1,2,1),B(3,2,3),AB是正方体的体对角线,AB=,设正方体的棱长为x,则,解得x=4正方体的棱长为4,故选:A【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题9 【答案】B【解析】解:向量=(1,),=(,x)共线,x=,故选:B【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题10【答案】C【解析】解:令F(x)=,(x0),则F(x)=,f(x)xf(x),F(x)0,F(x)为定义域上的减函数,由不等式x2f()f(x)0,得:,x,x1,故选:C11【答案】C【解析】解: =f(x0),故选C12【答案】B【解析】解:f(x)=2x,则f(x)=2xln2,故选:B【点评】本题考查了导数运算法则,属于基础题二、填空题13【答案】【解析】14【答案】y=cosx 【解析】解:把函数y=sin2x的图象向左平移个单位长度,得,即y=cos2x的图象,把y=cos2x的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx的图象;故答案为:y=cosx15【答案】 【解析】解:f(x)=2ax+2a+1,求导数,得f(x)=a(x1)(x+2)a=0时,f(x)=1,不符合题意;若a0,则当x2或x1时,f(x)0;当2x1时,f(x)0,f(x)在(2,1)是为减函数,在(,2)、(1,+)上为增函数;若a0,则当x2或x1时,f(x)0;当2x1时,f(x)0,f(x)在(2,1)是为增函数,在(,2)、(1,+)上为减函数因此,若函数的图象经过四个象限,必须有f(2)f(1)0,即()()0,解之得故答案为:【点评】本题主要考查了利用导数研究函数的单调性与极值、函数的图象、充要条件的判断等知识,属于基础题16【答案】(0,5) 【解析】解:y=ax的图象恒过定点(0,1),而f(x)=ax+4的图象是把y=ax的图象向上平移4个单位得到的,函数f(x)=ax+4的图象恒过定点P(0,5),故答案为:(0,5)【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题17【答案】8 【解析】解:抛物线y2=8x=2px,p=4,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,|MF|=x+=x+2=10,x=8,故答案为:8【点评】活用抛物线的定义是解决抛物线问题最基本的方法抛物线上的点到焦点的距离,叫焦半径到焦点的距离常转化为到准线的距离求解18【答案】 【解析】解:()0+(2)3=1+(2)2=1+=故答案为:三、解答题19【答案】 【解析】()证明:取CD的中点E,连接PE、EM、EAPCD为正三角形PECD,PE=PDsinPDE=2sin60=平面PCD平面ABCDPE平面ABCD四边形ABCD是矩形ADE、ECM、ABM均为直角三角形由勾股定理得EM=,AM=,AE=3EM2+AM2=AE2,AME=90AMPM()解:设D点到平面PAM的距离为d,连接DM,则VPADM=VDPAM而在RtPEM中,由勾股定理得PM=,即点D到平面PAM的距离为20【答案】 【解析】解:(1)1+x21恒成立,f(x)的定义域为(,+);(2)f(x)=f(x),f(x)为偶函数;(3)f(x)=f()=f(x)即f()=f(x)成立【点评】本题主要考查函数定义域以及函数奇偶性的判断,比较基础21【答案】【解析】(1)连接,由题意,知,平面又平面,又,2分由题意,得,则,4分又,平面5分平面,平面平面6分22【答案】 【解析】解:()f(x)=sincos+cos2=sin(+),由2k+2k,kZ可解得:4kx4k,kZ,函数f(x)单调递增区间是:4k,4k,kZ()f(A)=sin(+),由条件及正弦定理得sinBcosC=(2sinAsinC)cosB=2sinAcosBsinCcosB,则sinBcosC+sinCcosB=2sinAcosB,sin(B+C)=2sinAcosB,又sin(B+C)=sinA0,cosB=,又0B,B=可得0A,+,sin(+)1,故函数f(A)的取值范围是(1,)【点评】本题考查三角函数性质及简单的三角变换,要求学生能正确运用三角函数的概念和公式对已知的三角函数进行化简求值,属于中档题23【答案】 【解析】【专题】计算题【分析】(1)利用二项展开式的通项公式求出展开式的x的系数,列出方程得到m,n的关系;利用二项展开式的通项公式求出x2的系数,将m,n的关系代入得到关于m的二次函数,配方求出最小值(2)通过对x分别赋值1,1,两式子相加求出展开式中x的奇次幂项的系数之和【解答】解:(1)由已知Cm1+2Cn1=11,m+2n=11,x2的系数为Cm2+22Cn2=+2n(n1)=+(11m)(1)=(m)2+mN*,m=5时,x2的系数取得最小值22,此时n=3(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,f(x)=(1+x)5+(1+2x)3设这时f(x)的展开式为f(x)=a0+a1x+a2x2+a5x5,令x=1,a0+a1+a2+a3+a4+a5=25+33,令x=1,a0a1+a2a3+a4a5=1,两式相减得2(a1+a3+a5)=60,故展开式中x的奇次幂项的系数之和为30【点评】本题考查利用二项展开式的通项公式求二项展开式的特殊项问题;利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年公路水运工程试验检测师公共基础试题及答案(法规与技术标准)解析实战
- 安徽省安庆市潜山市2023-2024学年高三下学期高考二模语文考题及答案
- 2025 年小升初温州市初一新生分班考试数学试卷(带答案解析)-(浙教版)
- 2025 年小升初广州市初一新生分班考试语文试卷(带答案解析)-(部编版)
- 中国居民运动减重专家共识(2025)解读
- 陕西省安康市镇坪县牛头店镇九年制学校2024-2025学年七年级上学期期末测评数学试题(含简略答案)
- 第17课《孤独之旅》同步练习(含答案) 2025-2026学年统编版语文九年级上册
- 阳谷小麦购销合同范本
- 社区服务中心课件
- 安全防火合同范本
- 深度营养(传统饮食)
- 耳石症中医护理查房
- 汉语言文学毕业设计开题报告范文
- 电工与电子技术基础(第三版)技工院校计算机类专业全套教学课件
- 原子城纪念馆
- 室内消火栓使用培训课件
- 抖音违规考试试卷
- 2015-2023年注册会计师考试《会计》真题合集(含答案及解析)共10套
- 2024年创业计划书篮球馆
- 内分泌科对患者糖尿病足预防知识不知晓原因分析品管圈鱼骨图
- 幼儿园卫生保健新生家长会课件
评论
0/150
提交评论