




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷迁西县三中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )A80B40C60D202 在ABC中,内角A,B,C所对的边分别为a,b,c,已知a=3,A=60,则满足条件的三角形个数为( )A0B1C2D以上都不对3 设集合M=x|x2+3x+20,集合,则MN=( )Ax|x2Bx|x1Cx|x1Dx|x24 若f(x)=sin(2x+),则“f(x)的图象关于x=对称”是“=”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件5 过点(1,3)且平行于直线x2y+3=0的直线方程为( )Ax2y+7=0B2x+y1=0Cx2y5=0D2x+y5=06 复数z=(mR,i为虚数单位)在复平面上对应的点不可能位于( )A第一象限B第二象限C第三象限D第四象限7 两个随机变量x,y的取值表为x0134y2.24.34.86.7若x,y具有线性相关关系,且bx2.6,则下列四个结论错误的是( )Ax与y是正相关B当y的估计值为8.3时,x6C随机误差e的均值为0D样本点(3,4.8)的残差为0.658 已知是ABC的一个内角,tan=,则cos(+)等于( )ABCD9 命题:“x0,都有x2x0”的否定是( )Ax0,都有x2x0Bx0,都有x2x0Cx0,使得x2x0Dx0,使得x2x010函数(,)的部分图象如图所示,则 f (0)的值为( )A. B.C. D. 【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.11函数f(x)=x的图象关于( )Ay轴对称B直线y=x对称C坐标原点对称D直线y=x对称12已知向量,若,则实数( )A. B.C. D. 【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力二、填空题13下列四个命题申是真命题的是(填所有真命题的序号)“pq为真”是“pq为真”的充分不必要条件;空间中一个角的两边和另一个角的两边分别平行,则这两个角相等;在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30的角;动圆P过定点A(2,0),且在定圆B:(x2)2+y2=36的内部与其相内切,则动圆圆心P的轨迹为一个椭圆14某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示根据条形图可得这50名学生这一天平均的课外阅读时间为小时15若复数是纯虚数,则的值为 .【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力16已知线性回归方程=9,则b=17设函数f(x)=,则f(f(2)的值为18设集合A=x|x+m0,B=x|2x4,全集U=R,且(UA)B=,求实数m的取值范围为三、解答题19在直角坐标系xOy中,过点P(2,1)的直线l的倾斜角为45以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为sin2=4cos,直线l和曲线C的交点为A,B(1)求曲线C的直角坐标方程; (2)求|PA|PB| 20(本小题满分12分)在等比数列中,(1)求数列的通项公式;(2)设,且为递增数列,若,求证:21对于任意的nN*,记集合En=1,2,3,n,Pn=若集合A满足下列条件:APn;x1,x2A,且x1x2,不存在kN*,使x1+x2=k2,则称A具有性质如当n=2时,E2=1,2,P2=x1,x2P2,且x1x2,不存在kN*,使x1+x2=k2,所以P2具有性质()写出集合P3,P5中的元素个数,并判断P3是否具有性质()证明:不存在A,B具有性质,且AB=,使E15=AB()若存在A,B具有性质,且AB=,使Pn=AB,求n的最大值 22已知椭圆x2+4y2=4,直线l:y=x+m(1)若l与椭圆有一个公共点,求m的值;(2)若l与椭圆相交于P、Q两点,且|PQ|等于椭圆的短轴长,求m的值23设函数f(x)=lnx+,kR()若曲线y=f(x)在点(e,f(e)处的切线与直线x2=0垂直,求k值;()若对任意x1x20,f(x1)f(x2)x1x2恒成立,求k的取值范围;()已知函数f(x)在x=e处取得极小值,不等式f(x)的解集为P,若M=x|ex3,且MP,求实数m的取值范围 24甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛现已比赛了4场,且甲篮球队胜3场已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为()求甲队分别以4:2,4:3获胜的概率;()设X表示决出冠军时比赛的场数,求X的分布列及数学期望迁西县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,三年级要抽取的学生是200=40,故选:B【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果2 【答案】B【解析】解:a=3,A=60,由正弦定理可得:sinB=1,B=90,即满足条件的三角形个数为1个故选:B【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题3 【答案】A【解析】解:集合M=x|x2+3x+20=x|2x1,集合=x|2x22=x|x2=x|x2,MN=x|x2,故选A【点评】本题考查集合的运算,解题时要认真审题,仔细解答4 【答案】B【解析】解:若f(x)的图象关于x=对称,则2+=+k,解得=+k,kZ,此时=不一定成立,反之成立,即“f(x)的图象关于x=对称”是“=”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键5 【答案】A【解析】解:由题意可设所求的直线方程为x2y+c=0过点(1,3)代入可得16+c=0 则c=7x2y+7=0故选A【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x2y+c=06 【答案】C【解析】解:z=+i,当1+m0且1m0时,有解:1m1;当1+m0且1m0时,有解:m1;当1+m0且1m0时,有解:m1;当1+m0且1m0时,无解;故选:C【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题7 【答案】【解析】选D.由数据表知A是正确的,其样本中心为(2,4.5),代入bx2.6得b0.95,即0.95x2.6,当8.3时,则有8.30.95x2.6,x6,B正确根据性质,随机误差的均值为0,C正确样本点(3,4.8)的残差4.8(0.9532.6)0.65,D错误,故选D.8 【答案】B【解析】解:由于是ABC的一个内角,tan=,则=,又sin2+cos2=1,解得sin=,cos=(负值舍去)则cos(+)=coscossinsin=()=故选B【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题9 【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:x0,使得x2x0,故选:C【点评】本题主要考查含有量词的命题 的否定,比较基础10【答案】D【解析】易知周期,.由(),得(),可得,所以,则,故选D.11【答案】C【解析】解:f(x)=+x=f(x)是奇函数,所以f(x)的图象关于原点对称故选C12【答案】B【解析】由知,解得,故选B.二、填空题13【答案】 【解析】解:“pq为真”,则p,q同时为真命题,则“pq为真”,当p真q假时,满足pq为真,但pq为假,则“pq为真”是“pq为真”的充分不必要条件正确,故正确;空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故错误,设正三棱锥为PABC,顶点P在底面的射影为O,则O为ABC的中心,PCO为侧棱与底面所成角正三棱锥的底面边长为3,CO=侧棱长为2,在直角POC中,tanPCO=侧棱与底面所成角的正切值为,即侧棱与底面所成角为30,故正确,如图,设动圆P和定圆B内切于M,则动圆的圆心P到两点,即定点A(2,0)和定圆的圆心B(2,0)的距离之和恰好等于定圆半径,即|PA|+|PB|=|PM|+|PB|=|BM|=64=|AB|点P的轨迹是以A、B为焦点的椭圆,故动圆圆心P的轨迹为一个椭圆,故正确,故答案为:14【答案】0.9 【解析】解:由题意, =0.9,故答案为:0.915【答案】【解析】由题意知,且,所以,则.16【答案】4 【解析】解:将代入线性回归方程可得9=1+2b,b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题17【答案】4 【解析】解:函数f(x)=,f(2)=42=,f(f(2)=f()=4故答案为:418【答案】m2 【解析】解:集合A=x|x+m0=x|xm,全集U=R,所以CUA=x|xm,又B=x|2x4,且(UA)B=,所以有m2,所以m2故答案为m2三、解答题19【答案】 【解析】(1)sin2=4cos,2sin2=4cos,cos=x,sin=y,曲线C的直角坐标方程为y2=4x (2)直线l过点P(2,1),且倾斜角为45l的参数方程为(t为参数)代入 y2=4x 得t26t14=0设点A,B对应的参数分别t1,t2t1t2=14|PA|PB|=14 20【答案】(1);(2)证明见解析.【解析】试题分析:(1)将化为,联立方程组,求出,可得;(2)由于为递增数列,所以取,化简得,其前项和为.考点:数列与裂项求和法121【答案】【解析】解:()对于任意的nN*,记集合En=1,2,3,n,Pn=集合P3,P5中的元素个数分别为9,23,集合A满足下列条件:APn;x1,x2A,且x1x2,不存在kN*,使x1+x2=k2,则称A具有性质,P3不具有性质.证明:()假设存在A,B具有性质,且AB=,使E15=AB其中E15=1,2,3,15因为1E15,所以1AB,不妨设1A因为1+3=22,所以3A,3B同理6A,10B,15A因为1+15=42,这与A具有性质矛盾所以假设不成立,即不存在A,B具有性质,且AB=,使E15=AB.解:()因为当n15时,E15Pn,由()知,不存在A,B具有性质,且AB=,使Pn=AB若n=14,当b=1时,取A1=1,2,4,6,9,11,13,B1=3,5,7,8,10,12,14,则A1,B1具有性质,且A1B1=,使E14=A1B1当b=4时,集合中除整数外,其余的数组成集合为,令,则A2,B2具有性质,且A2B2=,使当b=9时,集中除整数外,其余的数组成集合,令,则A3,B3具有性质,且A3B3=,使集合中的数均为无理数,它与P14中的任何其他数之和都不是整数,因此,令A=A1A2A3C,B=B1B2B3,则AB=,且P14=AB综上,所求n的最大值为14.【点评】本题考查集合性质的应用,考查实数值最大值的求法,综合性强,难度大,对数学思维要求高,解题时要认真审题,注意分类讨论思想的合理运用22【答案】 【解析】解:(1)把直线y=x+m代入椭圆方程得:x2+4(x+m)2=4,即:5x2+8mx+4m24=0,=(8m)245(4m24)=16m2+80=0解得:m=(2)设该直线与椭圆相交于两点A(x1,y1),B(x2,y2),则x1,x2是方程5x2+8mx+4m24=0的两根,由韦达定理可得:x1+x2=,x1x2=,|AB|=2;m=【点评】本题考查直线与圆锥曲线的位置关系与弦长问题,难点在于弦长公式的灵活应用,属于中档题23【答案】 【解析】解:()由条件得f(x)=(x0),曲线y=f(x)在点(e,f(e)处的切线与直线x2=0垂直,此切线的斜率为0,即f(e)=0,有=0,得k=e;()条件等价于对任意x1x20,f(x1)x1f(x2)x2恒成立(*)设h(x)=f(x)x=lnx+x(x0),(*)等价于h(x)在(0,+)上单调递减由h(x)=100在(0,+)上恒成立,得kx2+x=(x)2+(x0)恒成立,k(对k=,h(x)=0仅在x=时成立),故k的取值范围是,+);()由题可得k=e,因为MP,所以f(x)在e,3上有解,即xe,3,使f(x)成立,即xe,3,使 mxlnx+e成立,所以m(xlnx+e)min,令g(x)=xlnx+e,g(x)=1+lnx0,所以g(x)在e,3上单调递增,g(x)min=g(e)=2e,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年4月重庆医科大学附属第三医院招聘医师、医技、护理、行政、其他岗位模拟试卷有答案详解
- 2025嘉兴市保安服务有限公司招聘2人考前自测高频考点模拟试题附答案详解(考试直接用)
- 2025年攀枝花市盐边县事业单位春季引才考核的模拟试卷及1套参考答案详解
- 2025河南郑州智能科技职业学院招聘考前自测高频考点模拟试题附答案详解(模拟题)
- 2025湖北武汉大学中南医院咸宁医院咸宁市第一人民医院招聘15人模拟试卷有答案详解
- 2025年福建省龙岩市武平县招聘教育卫生干部10人模拟试卷有答案详解
- 2025安徽蚌埠市《固镇县任桥镇2025年面向全县公开招聘村级后备干部》考前自测高频考点模拟试题及1套参考答案详解
- 山西省【中职专业高考】2025年中职高考对口升学(理论考试)真题卷【农林牧渔大类】模拟练习
- 2025广东珠海市香洲区招聘卫生健康系统事业单位人员10人及完整答案详解一套
- IBI-325-生命科学试剂-MCE
- 护理疑难病例讨论课件模板
- 同步课件4:改革开放和社会主义现代化建设的巨大成就
- DL-T-1878-2018燃煤电厂储煤场盘点导则
- 【顺丰控股财务报表探析探究14000字(论文)】
- 【农村电商发展探究文献综述与理论基础4500字】
- 地震逃生知识培训
- 《济南市城镇燃气领域重大隐患判定指导手册》
- 人工智能助力企业创新发展
- 资料员之资料员基础知识题库及完整答案(各地真题)
- 卢卡奇的《历史与阶级意识》
- JJG693-2011燃气泄漏检测仪器检定规程
评论
0/150
提交评论