瑞金市二中2018-2019学年上学期高二数学12月月考试题含解析_第1页
瑞金市二中2018-2019学年上学期高二数学12月月考试题含解析_第2页
瑞金市二中2018-2019学年上学期高二数学12月月考试题含解析_第3页
瑞金市二中2018-2019学年上学期高二数学12月月考试题含解析_第4页
瑞金市二中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷瑞金市二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知两条直线,其中为实数,当这两条直线的夹角在内变动时,的取值范围是( )A B C D2 若直线l的方向向量为=(1,0,2),平面的法向量为=(2,0,4),则( )AlBlClDl与相交但不垂直3 复数(为虚数单位),则的共轭复数为( ) A B C D【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力4 与椭圆有公共焦点,且离心率的双曲线方程为( )ABCD5 已知f(x)为偶函数,且f(x+2)=f(x),当2x0时,f(x)=2x;若nN*,an=f(n),则a2017等于( )A2017B8CD6 已知f(x)=,则f(2016)等于( )A1B0C1D27 已知点P(x,y)的坐标满足条件,(k为常数),若z=3x+y的最大值为8,则k的值为( )ABC6D68 平面与平面平行的条件可以是( )A内有无穷多条直线与平行B直线a,aC直线a,直线b,且a,bD内的任何直线都与平行9 已知函数,且,则( )A B C D【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力10某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量(单位:毫克/升)与时间(单位:小时)间的关系为(,均为正常数)如果前5个小时消除了的污染物,为了消除的污染物,则需要( )小时.A. B.C. D. 【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想. 11设D、E、F分别是ABC的三边BC、CA、AB上的点,且=2, =2, =2,则与( )A互相垂直B同向平行C反向平行D既不平行也不垂直12已知aR,复数z=(a2i)(1+i)(i为虚数单位)在复平面内对应的点为M,则“a=0”是“点M在第四象限”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件二、填空题13复数z=(i虚数单位)在复平面上对应的点到原点的距离为14设集合A=3,0,1,B=t2t+1若AB=A,则t=15设函数,若用表示不超过实数m的最大整数,则函数的值域为16过椭圆+=1(ab0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若F1PF2=60,则椭圆的离心率为17已知数列的前项和是, 则数列的通项_18已知圆,则其圆心坐标是_,的取值范围是_【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.三、解答题19已知命题p:x2,4,x22x2a0恒成立,命题q:f(x)=x2ax+1在区间上是增函数若pq为真命题,pq为假命题,求实数a的取值范围20斜率为2的直线l经过抛物线的y2=8x的焦点,且与抛物线相交于A,B两点,求线段AB的长21求曲线y=x3的过(1,1)的切线方程22如图所示,在正方体中(1)求与所成角的大小;(2)若、分别为、的中点,求与所成角的大小23过抛物线y2=2px(p0)的焦点F作倾斜角为45的直线交抛物线于A、B两点,若线段AB的长为8,求抛物线的方程24如图,在四边形ABCD中,DAB=90,ADC=135,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积瑞金市二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】1111试题分析:由直线方程,可得直线的倾斜角为,又因为这两条直线的夹角在,所以直线的倾斜角的取值范围是且,所以直线的斜率为且,即或,故选C.考点:直线的倾斜角与斜率.2 【答案】B【解析】解: =(1,0,2),=(2,0,4),=2,因此l故选:B3 【答案】A【解析】根据复数的运算可知,可知的共轭复数为,故选A.4 【答案】 A【解析】解:由于椭圆的标准方程为:则c2=132122=25则c=5又双曲线的离心率a=4,b=3又因为且椭圆的焦点在x轴上,双曲线的方程为:故选A【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于a,b的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1(m0,n0,mn),双曲线方程可设为mx2ny2=1(m0,n0,mn),由题目所给条件求出m,n即可5 【答案】D【解析】解:f(x+2)=f(x),f(x+4)=f(x+2)=f(x),即f(x+4)=f(x),即函数的周期是4a2017=f(2017)=f(5044+1)=f(1),f(x)为偶函数,当2x0时,f(x)=2x,f(1)=f(1)=,a2017=f(1)=,故选:D【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键6 【答案】D【解析】解:f(x)=,f(2016)=f(2011)=f(2006)=f(1)=f(4)=log24=2,故选:D【点评】本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题7 【答案】 B【解析】解:画出x,y满足的可行域如下图:z=3x+y的最大值为8,由,解得y=0,x=,(,0)代入2x+y+k=0,k=,故选B【点评】如果约束条件中含有参数,可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x,y后,即可求出参数的值8 【答案】D【解析】解:当内有无穷多条直线与平行时,a与可能平行,也可能相交,故不选A当直线a,a时,a与可能平行,也可能相交,故不选 B当直线a,直线b,且a 时,直线a 和直线 b可能平行,也可能是异面直线,故不选 C 当内的任何直线都与 平行时,由两个平面平行的定义可得,这两个平面平行,故选 D【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况9 【答案】D10【答案】15 【解析】11【答案】D【解析】解:如图所示,ABC中, =2, =2, =2,根据定比分点的向量式,得=+,=+, =+,以上三式相加,得+=,所以,与反向共线【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目12【答案】A【解析】解:若a=0,则z=2i(1+i)=22i,点M在第四象限,是充分条件,若点M在第四象限,则z=(a+2)+(a2)i,推出2a2,推不出a=0,不是必要条件;故选:A【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题二、填空题13【答案】 【解析】解:复数z=i(1+i)=1i,复数z=(i虚数单位)在复平面上对应的点(1,1)到原点的距离为:故答案为:【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力14【答案】0或1 【解析】解:由AB=A知BA,t2t+1=3t2t+4=0,无解 或t2t+1=0,无解 或t2t+1=1,t2t=0,解得 t=0或t=1故答案为0或1【点评】本题考查集合运算及基本关系,掌握好概念是基础正确的转化和计算是关键15【答案】0,1 【解析】解:=+=+,01,+,当0时,0,+1,故y=0;当=时,=0, +=1,故y=1;1时,0,1+,故y=1+1=0;故函数的值域为0,1故答案为:0,1【点评】本题考查了学生的化简运算能力及分类讨论的思想应用16【答案】 【解析】解:由题意知点P的坐标为(c,)或(c,),F1PF2=60,=,即2ac=b2=(a2c2)e2+2e=0,e=或e=(舍去)故答案为:【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题17【答案】【解析】当时,当时,两式相减得:令得,所以答案: 18【答案】,. 【解析】将圆的一般方程化为标准方程,圆心坐标,而,的范围是,故填:,.三、解答题19【答案】 【解析】解:x2,4,x22x2a0恒成立,等价于ax2x在x2,4恒成立,而函数g(x)=x2x在x2,4递增,其最大值是g(4)=4,a4,若p为真命题,则a4;f(x)=x2ax+1在区间上是增函数,对称轴x=,a1,若q为真命题,则a1;由题意知p、q一真一假,当p真q假时,a4;当p假q真时,a1,所以a的取值范围为(,14,+)20【答案】 【解析】解:设直线l的倾斜解为,则l与y轴的夹角=90,cot=tan=2,sin=,|AB|=40线段AB的长为40【点评】本题考查抛物线的焦点弦的求法,解题时要注意公式|AB|=的灵活运用21【答案】 【解析】解:y=x3的导数y=3x2,若(1,1)为切点,k=312=3,切线l:y1=3(x1)即3xy2=0;若(1,1)不是切点,设切点P(m,m3),k=3m2=,即2m2m1=0,则m=1(舍)或切线l:y1=(x1)即3x4y+1=0故切线方程为:3xy2=0或3x4y+1=0【点评】本题主要考查导数的几何意义、利用导数研究曲线上某点处的切线方程等基础知识,注意在某点处和过某点的切线,考查运算求解能力属于中档题和易错题22【答案】(1);(2)【解析】试题解析:(1)连接,由是正方体,知为平行四边形,所以,从而与所成的角就是与所成的角由可知,即与所成的角为考点:异面直线的所成的角【方法点晴】本题主要考查了异面直线所成的角的求解,其中解答中涉及到异面直线所成角的概念、三角形中位线与正方形的性质、正方体的结构特征等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,本题的解答中根据异面直线所成角的概念确定异面直线所成的角是解答的关键,属于中档试题23【答案】 【解析】解:由题意可知过焦点的直线方程为y=x,联立,得,设A(x1,y1),B(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论