隆化县第一高级中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
隆化县第一高级中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
隆化县第一高级中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
隆化县第一高级中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
隆化县第一高级中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

隆化县第一高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是()A最多可以购买4份一等奖奖品 B最多可以购买16份二等奖奖品C购买奖品至少要花费100元 D共有20种不同的购买奖品方案2 “双曲线C的渐近线方程为y=x”是“双曲线C的方程为=1”的( )A充要条件B充分不必要条件C必要不充分条件D不充分不必要条件3 若命题p:xR,x20,命题q:xR,x,则下列说法正确的是( )A命题pq是假命题B命题p(q)是真命题C命题pq是真命题D命题p(q)是假命题4 函数y=f(x)在1,3上单调递减,且函数f(x+3)是偶函数,则下列结论成立的是( )Af(2)f()f(5)Bf()f(2)f(5)Cf(2)f(5)f()Df(5)f()f(2)5 已知a0,实数x,y满足:,若z=2x+y的最小值为1,则a=( )A2B1CD6 如果函数f(x)的图象关于原点对称,在区间上是减函数,且最小值为3,那么f(x)在区间上是( )A增函数且最小值为3B增函数且最大值为3C减函数且最小值为3D减函数且最大值为3 7 定义:数列an前n项的乘积Tn=a1a2an,数列an=29n,则下面的等式中正确的是( )AT1=T19BT3=T17CT5=T12DT8=T118 如图所示,阴影部分表示的集合是( )A(UB)AB(UA)BCU(AB)DU(AB)9 已知函数关于直线对称 , 且,则的最小值为 A、 B、C、D、10已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )ABCD =0.08x+1.2311函数y=lnx(1xe2) 的值域是( )A0,2B2,0C,0D0,12在中,内角,所对的边分别是,已知,则( )A B C. D二、填空题13已知函数f(x)=,则关于函数F(x)=f(f(x)的零点个数,正确的结论是(写出你认为正确的所有结论的序号)k=0时,F(x)恰有一个零点k0时,F(x)恰有2个零点k0时,F(x)恰有3个零点k0时,F(x)恰有4个零点14已知定义在R上的奇函数满足,且时,则的值为 15(本小题满分12分)点M(2pt,2pt2)(t为常数,且t0)是拋物线C:x22py(p0)上一点,过M作倾斜角互补的两直线l1与l2与C的另外交点分别为P、Q.(1)求证:直线PQ的斜率为2t;(2)记拋物线的准线与y轴的交点为T,若拋物线在M处的切线过点T,求t的值16【常熟中学2018届高三10月阶段性抽测(一)】已知函数,若曲线(为自然对数的底数)上存在点使得,则实数的取值范围为_.17函数的定义域是,则函数的定义域是_.11118如果实数满足等式,那么的最大值是 三、解答题19已知函数f(x)=lnx+ax2+b(a,bR)()若曲线y=f(x)在x=1处的切线为y=1,求函数f(x)的单调区间;()求证:对任意给定的正数m,总存在实数a,使函数f(x)在区间(m,+)上不单调;()若点A(x1,y1),B(x2,y2)(x2x10)是曲线f(x)上的两点,试探究:当a0时,是否存在实数x0(x1,x2),使直线AB的斜率等于f(x0)?若存在,给予证明;若不存在,说明理由 20设函数f(x)=lnx+a(1x)()讨论:f(x)的单调性;()当f(x)有最大值,且最大值大于2a2时,求a的取值范围21设椭圆C: +=1(ab0)过点(0,4),离心率为(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标22已知函数f(x)=(ax2+x1)ex,其中e是自然对数的底数,aR()若a=0,求曲线f(x)在点(1,f(1)处的切线方程;()若,求f(x)的单调区间;()若a=1,函数f(x)的图象与函数的图象仅有1个公共点,求实数m的取值范围 23已知f(x)是定义在R上的奇函数,当x0时,f(x)=()x(1)求当x0时f(x)的解析式;(2)画出函数f(x)在R上的图象;(3)写出它的单调区间24如图,矩形ABCD和梯形BEFC所在平面互相垂直,BECF,BCCF,EF=2,BE=3,CF=4()求证:EF平面DCE;()当AB的长为何值时,二面角AEFC的大小为60隆化县第一高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】【知识点】线性规划【试题解析】设购买一、二等奖奖品份数分别为x,y,则根据题意有:,作可行域为:A(2,6),B(4,12),C(2,16)在可行域内的整数点有:(2,6),(2,7),(2,16),(3,9),(3,10),(3,14),(4,12),共11+6+1=18个。其中,x最大为4,y最大为16最少要购买2份一等奖奖品,6份二等奖奖品,所以最少要花费100元。所以A、B、C正确,D错误。故答案为:D2 【答案】C【解析】解:若双曲线C的方程为=1,则双曲线的方程为,y=x,则必要性成立,若双曲线C的方程为=2,满足渐近线方程为y=x,但双曲线C的方程为=1不成立,即充分性不成立,故“双曲线C的渐近线方程为y=x”是“双曲线C的方程为=1”的必要不充分条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据双曲线和渐近线之间的关系是解决本题的关键3 【答案】 B【解析】解:xR,x20,即不等式x20有解,命题p是真命题;x0时,x无解,命题q是假命题;pq为真命题,pq是假命题,q是真命题,p(q)是真命题,p(q)是真命题;故选:B【点评】考查真命题,假命题的概念,以及pq,pq,q的真假和p,q真假的关系4 【答案】B【解析】解:函数y=f(x)在1,3上单调递减,且函数f(x+3)是偶函数,f()=f(6),f(5)=f(1),f(6)f(2)f(1),f()f(2)f(5)故选:B【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档5 【答案】 C【解析】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=2x+z,平移直线y=2x+z,由图象可知当直线y=2x+z经过点C时,直线y=2x+z的截距最小,此时z最小即2x+y=1,由,解得,即C(1,1),点C也在直线y=a(x3)上,1=2a,解得a=故选:C【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法6 【答案】D【解析】解:由奇函数的性质可知,若奇函数f(x)在区间上是减函数,且最小值3,则那么f(x)在区间上为减函数,且有最大值为3,故选:D【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,比较基础7 【答案】C【解析】解:an=29n,Tn=a1a2an=28+7+9n=T1=28,T19=219,故A不正确T3=221,T17=20,故B不正确T5=230,T12=230,故C正确T8=236,T11=233,故D不正确故选C8 【答案】A【解析】解:由图象可知,阴影部分的元素由属于集合A,但不属于集合B的元素构成,对应的集合表示为AUB故选:A9 【答案】D【解析】:10【答案】C【解析】解:法一:由回归直线的斜率的估计值为1.23,可排除D由线性回归直线方程样本点的中心为(4,5),将x=4分别代入A、B、C,其值依次为8.92、9.92、5,排除A、B法二:因为回归直线方程一定过样本中心点,将样本点的中心(4,5)分别代入各个选项,只有C满足,故选C【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程11【答案】B【解析】解:函数y=lnx在(0,+)上为增函数,故函数y=lnx在(0,+)上为减函数,当1xe2时,若x=1,函数取最大值0,x=e2,函数取最小值2,故函数y=lnx(1xe2) 的值域是2,0,故选:B【点评】本题考查的知识点是对数函数的值域与最值,熟练掌握对数函数的图象和性质,是解答的关键12【答案】A【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理,余弦定理, 实现边与角的互相转化.二、填空题13【答案】 【解析】解:当k=0时,当x0时,f(x)=1,则f(f(x)=f(1)=0,此时有无穷多个零点,故错误;当k0时,()当x0时,f(x)=kx+11,此时f(f(x)=f(kx+1)=,令f(f(x)=0,可得:x=0;()当0x1时,此时f(f(x)=f()=,令f(f(x)=0,可得:x=,满足;()当x1时,此时f(f(x)=f()=k+10,此时无零点综上可得,当k0时,函数有两零点,故正确;当k0时,()当x时,kx+10,此时f(f(x)=f(kx+1)=k(kx+1)+1,令f(f(x)=0,可得:,满足;()当时,kx+10,此时f(f(x)=f(kx+1)=,令f(f(x)=0,可得:x=0,满足;()当0x1时,此时f(f(x)=f()=,令f(f(x)=0,可得:x=,满足;()当x1时,此时f(f(x)=f()=k+1,令f(f(x)=0得:x=1,满足;综上可得:当k0时,函数有4个零点故错误,正确故答案为:【点评】本题考查复合函数的零点问题考查了分类讨论和转化的思想方法,要求比较高,属于难题14【答案】【解析】1111试题分析:,所以考点:利用函数性质求值15【答案】【解析】解:(1)证明:l1的斜率显然存在,设为k,其方程为y2pt2k(x2pt)将与拋物线x22py联立得,x22pkx4p2t(kt)0,解得x12pt,x22p(kt),将x22p(kt)代入x22py得y22p(kt)2,P点的坐标为(2p(kt),2p(kt)2)由于l1与l2的倾斜角互补,点Q的坐标为(2p(kt),2p(kt)2),kPQ2t,即直线PQ的斜率为2t.(2)由y得y,拋物线C在M(2pt,2pt2)处的切线斜率为k2t.其切线方程为y2pt22t(x2pt),又C的准线与y轴的交点T的坐标为(0,)2pt22t(2pt)解得t,即t的值为.16【答案】【解析】结合函数的解析式:可得:,令y=0,解得:x=0,当x0时,y0,当x0,yy0,则f(f(y0)=f(c)f(y0)=cy0,不满足f(f(y0)=y0同理假设f(y0)=c0,g(x)在(0,e)单调递增,当x=e时取最大值,最大值为,当x0时,a-,a的取值范围.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号而解答本题(2)问时,关键是分离参数k,把所求问题转化为求函数的最小值问题(2)若可导函数f(x)在指定的区间D上单调递增(减),求参数范围问题,可转化为f(x)0(或f(x)0)恒成立问题,从而构建不等式,要注意“”是否可以取到17【答案】【解析】考点:函数的定义域.18【答案】【解析】 考点:直线与圆的位置关系的应用. 1【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方法,本题的解答中把的最值转化为直线与圆相切是解答的关键,属于中档试题.三、解答题19【答案】 【解析】解:()由已知得解得此时,(x0)令f(x)=0,得x=1,f(x),f(x)的变化情况如下表:x(0,1)1(1,+)f(x)+0f(x)单调递增极大值单调递减所以函数f(x)的增区间为(0,1),减区间为(1,+)()(x0)(1)当a0时,f(x)0恒成立,此时,函数f(x)在区间(0,+)上单调递增,不合题意,舍去(2)当a0时,令f(x)=0,得,f(x),f(x)的变化情况如下表:x(0,)(,+)f(x)+0f(x)单调递增极大值单调递减所以函数f(x)的增区间为(0,),减区间为(,+)要使函数f(x)在区间(m,+)上不单调,须且只须m,即所以对任意给定的正数m,只须取满足的实数a,就能使得函数f(x)在区间(m,+)上不单调()存在实数x0(x1,x2),使直线AB的斜率等于f(x0)证明如下:令g(x)=lnxx+1(x0),则,易得g(x)在x=1处取到最大值,且最大值g(1)=0,即g(x)0,从而得lnxx1 (*)由,得令,则p(x),q(x)在区间x1,x2上单调递增且,结合(*)式可得,令h(x)=p(x)+q(x),由以上证明可得,h(x)在区间x1,x2上单调递增,且h(x1)0,h(x2)0,所以函数h(x)在区间(x1,x2)上存在唯一的零点x0,即成立,从而命题成立(注:在()中,未计算b的值不扣分)【点评】本小题主要考查函数导数的几何意义、导数的运算及导数的应用,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程思想、化归与转化思想、分类与整合思想20【答案】 【解析】解:()f(x)=lnx+a(1x)的定义域为(0,+),f(x)=a=,若a0,则f(x)0,函数f(x)在(0,+)上单调递增,若a0,则当x(0,)时,f(x)0,当x(,+)时,f(x)0,所以f(x)在(0,)上单调递增,在(,+)上单调递减,(),由()知,当a0时,f(x)在(0,+)上无最大值;当a0时,f(x)在x=取得最大值,最大值为f()=lna+a1,f()2a2,lna+a10,令g(a)=lna+a1,g(a)在(0,+)单调递增,g(1)=0,当0a1时,g(a)0,当a1时,g(a)0,a的取值范围为(0,1)【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题21【答案】 【解析】解:(1)将点(0,4)代入椭圆C的方程得=1,b=4,由e=,得1=,a=5,椭圆C的方程为+=1(2)过点(3,0)且斜率为的直线为y=(x3),设直线与椭圆C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x3)代入椭圆C方程,整理得x23x8=0,由韦达定理得x1+x2=3,y1+y2=(x13)+(x23)=(x1+x2)=由中点坐标公式AB中点横坐标为,纵坐标为,所截线段的中点坐标为(,)【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键22【答案】 【解析】解:()a=0,f(x)=(x1)ex,f(x)=ex+(x1)ex=xex,曲线f(x)在点(1,f(1)处的切线斜率为k=f(1)=e又f(1)=0,所求切线方程为y=e(x1),即exy4=0()f(x)=(2ax+1)ex+(ax2+x1)ex=ax2+(2a+1)xex=x(ax+2a+1)ex,若a=,f(x)=x2ex0,f(x)的单调递减区间为(,+),若a,当x或x0时,f(x)0;当x0时,f(x)0f(x)的单调递减区间为(,0,+);单调递增区间为,0()当a=1时,由()知,f(x)=(x2+x1)ex在(,1)上单调递减,在1,0单调递增,在0,+)上单调递减,f(x)在x=1处取得极小值f(1)=,在x=0处取得极大值f(0)=1,由,得g(x)=2x2+2x当x1或x0时,g(x)0;当1x0时,g(x)0g(x)在(,1上单调递增,在1,0单调递减,在0,+)上单调递增故g(x)在x=1处取得极大值,在x=0处取得极小值g(0)=m,数f(x)与函数g(x)的图象仅有1个公共点,g(1)f(1)或g(0)f(0),即.【点评】本题考查了曲线的切线方程问题,考查函数的单调性、极值问题,考查导数的应用,是一道中档题23【答案】 【解析】解:(1)若 x0,则x0(1分)当x0时,f(x)=()xf(x)=()xf(x)是定义在R上的奇函数,f(x)=f(x),f

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论