黑山县三中2018-2019学年上学期高二数学12月月考试题含解析_第1页
黑山县三中2018-2019学年上学期高二数学12月月考试题含解析_第2页
黑山县三中2018-2019学年上学期高二数学12月月考试题含解析_第3页
黑山县三中2018-2019学年上学期高二数学12月月考试题含解析_第4页
黑山县三中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷黑山县三中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 若命题“pq”为假,且“q”为假,则( )A“pq”为假Bp假Cp真D不能判断q的真假2 已知等比数列an的前n项和为Sn,若=4,则=( )A3B4CD133 设f(x)与g(x)是定义在同一区间a,b上的两个函数,若函数y=f(x)g(x)在xa,b上有两个不同的零点,则称f(x)和g(x)在a,b上是“关联函数”,区间a,b称为“关联区间”若f(x)=x23x+4与g(x)=2x+m在0,3上是“关联函数”,则m的取值范围为( )A(,2B1,0C(,2D(,+)4 已知集合,则( )A B C D【命题意图】本题考查集合的交集运算,意在考查计算能力5 若数列an的通项公式an=5()2n24()n1(nN*),an的最大项为第p项,最小项为第q项,则qp等于( )A1B2C3D46 双曲线4x2+ty24t=0的虚轴长等于( )AB2tCD47 等差数列an中,a1+a5=10,a4=7,则数列an的公差为( )A1B2C3D48 已知偶函数f(x)满足当x0时,3f(x)2f()=,则f(2)等于( )ABCD9 与向量=(1,3,2)平行的一个向量的坐标是( )A(,1,1)B(1,3,2)C(,1)D(,3,2) 10四面体 中,截面 是正方形, 则在下列结论中,下列说法错误的是( ) A B C. D异面直线与所成的角为11(文科)要得到的图象,只需将函数的图象( )A向左平移1个单位 B向右平移1个单位 C向上平移1个单位 D向下平移1个单位12设平面与平面相交于直线m,直线a在平面内,直线b在平面内,且bm,则“”是“ab”的( )A必要不充分条件B充分不必要条件C充分必要条件D既不充分也不必要条件二、填空题13某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有种14函数的单调递增区间是15已知向量、满足,则|+|=16已知曲线y=(a3)x3+lnx存在垂直于y轴的切线,函数f(x)=x3ax23x+1在1,2上单调递减,则a的范围为17设i是虚数单位,是复数z的共轭复数,若复数z=3i,则z=18函数的定义域是,则函数的定义域是_.111三、解答题19已知函数f(x)=ax(a0且a1)的图象经过点(2,)(1)求a的值;(2)比较f(2)与f(b2+2)的大小;(3)求函数f(x)=a(x0)的值域20求函数f(x)=4x+4在0,3上的最大值与最小值21如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2b截得的线段长等于椭圆C1的短轴长C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,()求C1、C2的方程;()记MAB,MDE的面积分别为S1、S2,若,求直线AB的方程22如图,在四棱锥PABCD中,底面ABCD是正方形,PA底面ABCD,且PA=AD,点F是棱PD的中点,点E为CD的中点(1)证明:EF平面PAC;(2)证明:AFEF23【南京市2018届高三数学上学期期初学情调研】已知函数f(x)2x33(a+1)x26ax,aR()曲线yf(x)在x0处的切线的斜率为3,求a的值;()若对于任意x(0,+),f(x)f(x)12lnx恒成立,求a的取值范围;()若a1,设函数f(x)在区间1,2上的最大值、最小值分别为M(a)、m(a),记h(a)M(a)m(a),求h(a)的最小值24某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?黑山县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:命题“pq”为假,且“q”为假,q为真,p为假;则pq为真,故选B【点评】本题考查了复合命题的真假性的判断,属于基础题2 【答案】D【解析】解:Sn为等比数列an的前n项和,=4,S4,S8S4,S12S8也成等比数列,且S8=4S4,(S8S4)2=S4(S12S8),即9S42=S4(S124S4),解得=13故选:D【点评】熟练掌握等比数列的性质是解题的关键是基础的计算题3 【答案】A【解析】解:f(x)=x23x+4与g(x)=2x+m在0,3上是“关联函数”,故函数y=h(x)=f(x)g(x)=x25x+4m在0,3上有两个不同的零点,故有,即,解得m2,故选A【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题4 【答案】C【解析】当时,所以,故选C5 【答案】A【解析】解:设=t(0,1,an=5()2n24()n1(nN*),an=5t24t=,an,当且仅当n=1时,t=1,此时an取得最大值;同理n=2时,an取得最小值qp=21=1,故选:A【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题6 【答案】C【解析】解:双曲线4x2+ty24t=0可化为:双曲线4x2+ty24t=0的虚轴长等于故选C7 【答案】B【解析】解:设数列an的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B8 【答案】D【解析】解:当x0时,3f(x)2f()=,3f()2f(x)=,3+2得:5f(x)=,故f(x)=,又函数f(x)为偶函数,故f(2)=f(2)=,故选:D【点评】本题考查的知识点是函数奇偶性的性质,其中根据已知求出当x0时,函数f(x)的解析式,是解答的关键9 【答案】C【解析】解:对于C中的向量:(,1)=(1,3,2)=,因此与向量=(1,3,2)平行的一个向量的坐标是故选:C【点评】本题考查了向量共线定理的应用,属于基础题10【答案】B【解析】试题分析:因为截面是正方形,所以,则平面平面,所以,由可得,所以A正确;由于可得截面,所以C正确;因为,所以,由,所以是异面直线与所成的角,且为,所以D正确;由上面可知,所以,而,所以,所以B是错误的,故选B. 1考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键.11【答案】C【解析】试题分析:,故向上平移个单位.考点:图象平移 12【答案】B【解析】解:bm,当,则由面面垂直的性质可得ab成立,若ab,则不一定成立,故“”是“ab”的充分不必要条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键二、填空题13【答案】75 【解析】计数原理的应用【专题】应用题;排列组合【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,根据分类计数加法得到共有60+15=75种不同的方法故答案为:75【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏14【答案】2,3) 【解析】解:令t=3+4xx20,求得1x3,则y=,本题即求函数t在(1,3)上的减区间利用二次函数的性质可得函数t在(1,3)上的减区间为2,3),故答案为:2,3)15【答案】5 【解析】解: =(1,0)+(2,4)=(3,4)=5故答案为:5【点评】本题考查了向量的运算法则和模的计算公式,属于基础题16【答案】 【解析】解:因为y=(a3)x3+lnx存在垂直于y轴的切线,即y=0有解,即y=在x0时有解,所以3(a3)x3+1=0,即a30,所以此时a3函数f(x)=x3ax23x+1在1,2上单调递减,则f(x)0恒成立,即f(x)=3x22ax30恒成立,即,因为函数在1,2上单调递增,所以函数的最大值为,所以,所以综上故答案为:【点评】本题主要考查导数的基本运算和导数的应用,要求熟练掌握利用导数在研究函数的基本应用17【答案】10 【解析】解:由z=3i,得z=故答案为:10【点评】本题考查公式,考查了复数模的求法,是基础题18【答案】【解析】考点:函数的定义域.三、解答题19【答案】 【解析】解:(1)f(x)=ax(a0且a1)的图象经过点(2,),a2=,a=(2)f(x)=()x在R上单调递减,又2b2+2,f(2)f(b2+2),(3)x0,x22x1,()1=30f(x)(0,320【答案】 【解析】解:,f(x)=x24,由f(x)=x24=0,得x=2,或x=2,x0,3,x=2,当x变化时,f(x),f(x)的变化情况如下表:x0(0,2)2(2,3)3f(x)0+f(x)4单调递减极小值单调递增1由上表可知,当x=0时,f(x)max=f(0)=4,当x=2时,21【答案】 【解析】解:()椭圆C1:的离心率为,a2=2b2,令x2b=0可得x=,x轴被曲线C2:y=x2b截得的线段长等于椭圆C1的短轴长,2=2b,b=1,C1、C2的方程分别为,y=x21; ()设直线MA的斜率为k1,直线MA的方程为y=k1x1与y=x21联立得x2k1x=0x=0或x=k1,A(k1,k121)同理可得B(k2,k221)S1=|MA|MB|=|k1|k2|y=k1x1与椭圆方程联立,可得D(),同理可得E() S2=|MD|ME|= 若则解得或直线AB的方程为或【点评】本题考查椭圆的标准方程,考查直线与抛物线、椭圆的位置关系,考查三角形面积的计算,联立方程,确定点的坐标是关键22【答案】 【解析】(1)证明:如图,点E,F分别为CD,PD的中点,EFPCPC平面PAC,EF平面PAC,EF平面PAC(2)证明:PA平面ABCD,CD平面ABCD,又ABCD是矩形,CDAD,PAAD=A,CD平面PADAF平面PAD,AFCDPA=AD,点F是PD的中点,AFPD又CDPD=D,AF平面PDCEF平面PDC,AFEF【点评】本题考查了线面平行的判定,考查了由线面垂直得线线垂直,综合考查了学生的空间想象能力和思维能力,是中档题23【答案】(1)a(2)(,1(3)【解析】(2)f(x)f(x)6(a1)x212lnx对任意x(0,+)恒成立,所以(a1)令g(x),x0,则g(x)令g(x)0,解得x当x(0,)时,g(x)0,所以g(x)在(0,)上单调递增;当x(,)时,g(x)0,所以g(x)在(,)上单调递减所以g(x)maxg(),所以(a1),即a1,所以a的取值范围为(,1(3)因为f(x)2x33(a1)x26ax,所以f (x)6x26(a1)x6a6(x1)(xa),f(1)3a1,f(2)4令f (x)0,则x1或a f(1)3a1,f(2)4当a2时,当x(1,a)时,f (x)0,所以f(x)在(1,a)上单调递减;当x(a,2)时,f (x)0,所以f(x)在(a,2)上单调递增又因为f(1)f(2),所以M(a)f(1)3a1,m(a)f(a)a33a2,所以h(a)M(a)m(a)3a1(a33a2)a33a23a1因为h (a)3a26a33(a1)20所以h(a)在(,2)上单调递增,所以当a(,2)时,h(a)h()当a2时,当x(1,2)时,f (x)0,所以f(x)在(1,2)上单调递减,所以M(a)f(1)3a1,m(a)f(2)4,所以h(a)M(a)m(a)3a143a5,所以h(a)在2,)上的最小值为h(2)1综上,h(a)的最小值为点睛:已知函数最值求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数最值取法,根据最值列等量关系,确定参数值或取值范围

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论