已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷澜沧拉祜族自治县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知为自然对数的底数,若对任意的,总存在唯一的,使得成立,则实数的取值范围是( )A. B. C. D.【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力2 已知条件p:x2+x20,条件q:xa,若q是p的充分不必要条件,则a的取值范围可以是( )Aa1Ba1Ca1Da33 某三棱锥的三视图如图所示,该三棱锥的体积是( )A 2 B4 C D【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.4 下列函数中,既是奇函数又是减函数的为( )Ay=x+1By=x2CDy=x|x|5 若某程序框图如图所示,则该程序运行后输出的值是( )A. B.C. D. 【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件.6 现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有( )A27种B35种C29种D125种7 设f(x)=asin(x+)+bcos(x+)+4,其中a,b,均为非零的常数,f(1988)=3,则f(2008)的值为( )A1B3C5D不确定8 等比数列an中,a3,a9是方程3x211x+9=0的两个根,则a6=( )A3BCD以上皆非9 设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为( )A3a2B6a2C12a2D24a210已知函数f(x)=ax+b(a0且a1)的定义域和值域都是1,0,则a+b=( )ABCD或11函数是指数函数,则的值是( )A4 B1或3 C3 D112已知向量与的夹角为60,|=2,|=6,则2在方向上的投影为( )A1B2C3D4二、填空题13在矩形ABCD中,=(1,3),则实数k=14函数在点处切线的斜率为 15在极坐标系中,直线l的方程为cos=5,则点(4,)到直线l的距离为16在中,角、所对应的边分别为、,若,则_17已知定义域为(0,+)的函数f(x)满足:(1)对任意x(0,+),恒有f(2x)=2f(x)成立;(2)当x(1,2时,f(x)=2x给出如下结论:对任意mZ,有f(2m)=0;函数f(x)的值域为0,+);存在nZ,使得f(2n+1)=9;“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在kZ,使得(a,b)(2k,2k+1)”;其中所有正确结论的序号是18不等式恒成立,则实数的值是_.三、解答题19已知函数f(x)=loga(x2+2),若f(5)=3;(1)求a的值; (2)求的值; (3)解不等式f(x)f(x+2)20数列中,且满足.(1)求数列的通项公式;(2)设,求.21长方体ABCDA1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点(1)求证:BD1平面A1DE;(2)求证:A1D平面ABD122如图,矩形ABCD和梯形BEFC所在平面互相垂直,BECF,BCCF,EF=2,BE=3,CF=4()求证:EF平面DCE;()当AB的长为何值时,二面角AEFC的大小为6023已知函数f(x)=ax2+lnx(aR)(1)当a=时,求f(x)在区间1,e上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)g(x)f2(x),那么就称g(x)为f1(x),f2(x)的“活动函数”已知函数+2ax若在区间(1,+)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围24如图所示,在正方体ABCDA1B1C1D1中,E是棱DD1的中点()求直线BE与平面ABB1A1所成的角的正弦值;()在棱C1D1上是否存在一点F,使B1F平面A1BE?证明你的结论澜沧拉祜族自治县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B 【解析】2 【答案】A【解析】解:条件p:x2+x20,条件q:x2或x1q是p的充分不必要条件a1 故选A3 【答案】B 4 【答案】D【解析】解:y=x+1不是奇函数;y=x2不是奇函数;是奇函数,但不是减函数;y=x|x|既是奇函数又是减函数,故选:D【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题5 【答案】A【解析】运行该程序,注意到循环终止的条件,有n10,i1;n5,i2;n16,i3;n8,i4;n4,i5;n2,i6;n1,i7,到此循环终止,故选 A.6 【答案】 B【解析】排列、组合及简单计数问题【专题】计算题【分析】根据题意,可将7台型号相同的健身设备看成是相同的元素,首先分给甲、乙两个社区各台设备,再将余下的三台设备任意分给五个社区,分三种情况讨论分配方案,当三台设备都给一个社区,当三台设备分为1和2两份分给2个社区,当三台设备按1、1、1分成三份时分给三个社区,分别求出其分配方案数目,将其相加即可得答案【解答】解:根据题意,7台型号相同的健身设备是相同的元素,首先要满足甲、乙两个社区至少2台,可以先分给甲、乙两个社区各2台设备,余下的三台设备任意分给五个社区,分三种情况讨论:当三台设备都给一个社区时,有5种结果,当三台设备分为1和2两份分给2个社区时,有2C52=20种结果,当三台设备按1、1、1分成三份时分给三个社区时,有C53=10种结果,不同的分配方案有5+20+10=35种结果;故选B【点评】本题考查分类计数原理,注意分类时做到不重不漏,其次注意型号相同的健身设备是相同的元素7 【答案】B【解析】解:f(1988)=asin(1988+)+bcos(1998+)+4=asin+bcos+4=3,asin+bcos=1,故f(2008)=asin(2008+)+bcos(2008+)+4=asin+bcos+4=1+4=3,故选:B【点评】本题主要考查利用诱导公式进行化简求值,属于中档题8 【答案】C【解析】解:a3,a9是方程3x211x+9=0的两个根,a3a9=3,又数列an是等比数列,则a62=a3a9=3,即a6=故选C9 【答案】B【解析】解:根据题意球的半径R满足(2R)2=6a2,所以S球=4R2=6a2故选B10【答案】B【解析】解:当a1时,f(x)单调递增,有f(1)=+b=1,f(0)=1+b=0,无解;当0a1时,f(x)单调递减,有f(1)=0,f(0)=1+b=1,解得a=,b=2;所以a+b=;故选:B11【答案】C【解析】考点:指数函数的概念12【答案】A【解析】解:向量与的夹角为60,|=2,|=6,(2)=2=22262cos60=2,2在方向上的投影为=故选:A【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目二、填空题13【答案】4 【解析】解:如图所示,在矩形ABCD中,=(1,3),=(k1,2+3)=(k1,1),=1(k1)+(3)1=0,解得k=4故答案为:4【点评】本题考查了利用平面向量的数量积表示向量垂直的应用问题,是基础题目14【答案】【解析】试题分析:考点:导数几何意义【思路点睛】(1)求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.15【答案】3 【解析】解:直线l的方程为cos=5,化为x=5点(4,)化为点到直线l的距离d=52=3故答案为:3【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题16【答案】【解析】因为,所以,所以,所以答案: 17【答案】 【解析】解:x(1,2时,f(x)=2xf(2)=0f(1)=f(2)=0f(2x)=2f(x),f(2kx)=2kf(x)f(2m)=f(22m1)=2f(2m1)=2m1f(2)=0,故正确;设x(2,4时,则x(1,2,f(x)=2f()=4x0若x(4,8时,则x(2,4,f(x)=2f()=8x0一般地当x(2m,2m+1),则(1,2,f(x)=2m+1x0,从而f(x)0,+),故正确;由知当x(2m,2m+1),f(x)=2m+1x0,f(2n+1)=2n+12n1=2n1,假设存在n使f(2n+1)=9,即2n1=9,2n=10,nZ,2n=10不成立,故错误;由知当x(2k,2k+1)时,f(x)=2k+1x单调递减,为减函数,若(a,b)(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确故答案为:18【答案】【解析】试题分析:因为不等式恒成立,所以当时,不等式可化为,不符合题意;当时,应满足,即,解得.1考点:不等式的恒成立问题.三、解答题19【答案】 【解析】解:(1)f(5)=3,即loga27=3解锝:a=3(2)由(1)得函数,则=(3)不等式f(x)f(x+2),即为化简不等式得函数y=log3x在(0,+)上为增函数,且的定义域为Rx2+2x2+4x+6即4x4,解得x1,所以不等式的解集为:(1,+)20【答案】(1);(2)【解析】试题分析:(1)由,所以是等差数列且,即可求解数列的通项公式;(2)由(1)令,得,当时,;当时,;当时,即可分类讨论求解数列当时,.1考点:等差数列的通项公式;数列的求和21【答案】 【解析】证明:(1)连结A1D,AD1,A1DAD1=O,连结OE,长方体ABCDA1B1C1D1中,ADD1A1是矩形,O是AD1的中点,OEBD1,OEBD1,OE平面ABD1,BD1平面ABD1,BD1平面A1DE(2)长方体ABCDA1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点,ADD1A1是正方形,A1DAD1,长方体ABCDA1B1C1D1中,AB平面ADD1A1,A1DAB,又ABAD1=A,A1D平面ABD122【答案】 【解析】证明:()在BCE中,BCCF,BC=AD=,BE=3,EC=,在FCE中,CF2=EF2+CE2,EFCE由已知条件知,DC平面EFCB,DCEF,又DC与EC相交于C,EF平面DCE解:()方法一:过点B作BHEF交FE的延长线于H,连接AH由平面ABCD平面BEFC,平面ABCD平面BEFC=BC,ABBC,得AB平面BEFC,从而AHEF所以AHB为二面角AEFC的平面角在RtCEF中,因为EF=2,CF=4EC=CEF=90,由CEBH,得BHE=90,又在RtBHE中,BE=3,由二面角AEFC的平面角AHB=60,在RtAHB中,解得,所以当时,二面角AEFC的大小为60方法二:如图,以点C为坐标原点,以CB,CF和CD分别作为x轴,y轴和z轴,建立空间直角坐标系Cxyz设AB=a(a0),则C(0,0,0),A(,0,a),B(,0,0),E(,3,0),F(0,4,0)从而,设平面AEF的法向量为,由得,取x=1,则,即,不妨设平面EFCB的法向量为,由条件,得解得所以当时,二面角AEFC的大小为60【点评】本题考查的知识点是用空间向量求平面间的夹角,其中(I)的关键是熟练掌握线线垂直、线面垂直与面面垂直的之间的相互转化,(II)的关键是建立空间坐标系,将二面角问题,转化为向量的夹角问题23【答案】 【解析】解:(1)当时,;对于x1,e,有f(x)0,f(x)在区间1,e上为增函数,(2)在区间(1,+)上,函数f(x)是f1(x),f2(x)的“活动函数”,则f1(x)f(x)f2(x)令0,对x(1,+)恒成立,且h(x)=f1(x)f(x)=0对x(1,+)恒成立,1)若,令p(x)=0,得极值点x1=1,当x2x1=1,即时,在(x2,+)上有p(x)0,此时p(x)在区间(x2,+)上是增函数,并且在该区间上有p(x)(p(x2),+),不合题意;当x2x1=1,即a1时,同理可知,p(x)在区间(1,+)上,有p(x)(p(1),+),也不合题意;2)若,则有2a10,此时在区间(1,+)上恒有p(x)0,从而p(x)在区间(1,+)上是减函数;要使p(x)0在此区间上恒成立,只须满足,所以a又因为h(x)=x+2a=0,h(x)在(1,+)上为减函数,h(x)h(1)=+2a0,所以a综合可知a的范围是,【点评】本题考查的知识点是利用导数求函数的最值,利用最值解决恒成立问题,二对于新定义题型关键是弄清新概念与旧知识点之间的联系即可,结合着我们已学的知识解决问题,这是高考考查的热点之一24【答案】 【解析】解:(I)如图(a),取AA1的中点M,连接EM,BM,因为E是DD1的中点,四边形ADD1A1为正方形,所以EMAD又在正方体ABCDA1B1C1D1中AD平面ABB1A1,所以EM面ABB1A1,从而BM为直线BE在平面ABB1A1上的射影,EBM直线BE与平面ABB1A1所成的角设正方体的棱长为2,则EM=AD=2,BE=,于是在RtBEM中,即直线BE与平面ABB1A1所成的角的正弦值为()在棱C1D1上存在点F,使B1F平面A1BE,事实上,如图(b)所示,分别取C1D1和CD的中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Unit 6 Enjoy the festivals 教学设计-2025-2026学年五年级英语上册(外研社版)
- 2026年医疗数据统计合同
- 陕西省渭南市蒲城县2025年高一上物理期末综合测试试题含解析
- 中国消防救援学院《材料表征方法》2024-2025学年第一学期期末试卷
- 新疆维吾尔自治区2025年数学高一上期末监测模拟试题含解析
- 大疱性表皮松解症个案护理
- 陕西韩城2025-2026学年生物高二上期末质量跟踪监视试题含解析
- 山东艺术学院《乡村景观设计专题》2024-2025学年第一学期期末试卷
- 山东专卷博雅闻道2026届生物高一第一学期期末经典试题含解析
- 云南国防工业职业技术学院《地球化学》2024-2025学年第一学期期末试卷
- 五笔字型速查表史上全面版本(编码和字根)
- 对新员工保密基本培训
- 国开(河北)2024年秋《现代产权法律制度专题》形考作业1-4答案
- 3.14 丝绸之路的开通与经营西域 课件 2024-2025学年部编版
- 除颤仪使用培训
- 2024年新青岛版(六三制)五年级上册科学全册知识点 (超全)
- 全国基础教育英语综合能力竞赛
- WPS办公应用职业技能等级(初级)考试复习题库(含答案)
- 教师校园网络安全培训
- 弘扬宪法精神建设法制校园课件
- 花卉创业培训课件
评论
0/150
提交评论