




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,第一部分 考点研究,第七章 图形的变化,课时29 图形的对称与折叠,考点精讲,图形的对称与折叠,轴对称图形与轴对称 中心对称图形与中心对称 折叠的性质,轴对称图形与轴对称,Flash-“动”悉重难点,对称图形的理解和对应关系,C,AC,点C,位置,垂直平分,中心对称图形与中心对称,BC,C,D,对称中心,对称中心,1.位于折痕两侧的图形关于折痕成 图形 2.满足折叠性质即折叠前后的两部分图形全等,对应边、角、线段、周长、面积等均相等 3.折叠前后,对应点的连线被 垂直平分,折叠的性质,轴对称,折痕,重难点突破,图形的对称及相关计算,例1 如图,已知直线MN是线段AD的垂直平分线,点C在MN上,MCA=20,ACB=90,CA=CB=5,连接BD交MN于点E,交AC于点F,连接AE. (1)分别求CBE和CAE的度数; (2)求AE2+BE2的值.,例1题图,一,(1)【思维教练】根据MN垂直平分AD,得出相关线段的关系,进而得出相关角的关系,再进行求解;,解:(1)如解图,连接CD, MN垂直平分AD,点C,E在MN上, 根据点A,D关于MN对称,得CACD, MCDMCA,CAECDE, CACB, CBCD,CBECDB,,CBECAE, MCA20, MCD20, ACB90, BCDMCAMCDACB130, CBECDB25, CAECDBCBE25;,(2)【思维教练】由(1)中的结论可证明AEB为直角三角形,再根据勾股定理,在RtABC与RtAEB中,利用斜边AB进行等量代换,即可进行解答.,解:CFE既是AEF的外角又是BCF的外角, CFECAEAEFCBFFCB, CAECBE,AEBACB90, AE2BE2AB2,ACB90,CACB,AC5, AB2AC2BC250, AE2BE2AB2AC2BC250.,练习1 (2016青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是 ( ),B,【解析】逐项分析如下:,练习2 如图,O与O均与y轴相切且关于某点中心对称,已知A点坐标为(2,5),O点坐标为(2,3),O点坐标为(-2,1), (1)求出对称中心的坐标; (2)求出A点的对应点A的坐标并求出AA的长度.,练习2题图,解:(1)如解图,连接OO,与y轴的交点记为点D,则对称中心的点坐标为点D的坐标,即 ,化简得D(0,2); (2)连接AD并延长交O于A点,则A点为A点的对应点,由A点、D点的坐标可推出A点坐标为(2,1),过点A作AEx轴,过点A作AEy轴,交点为E,AA2AE2AE2, AA,图形的折叠及相关计算(难点),例2 如图,在ABC中,ACB=90,CAB=30,ABD是等边三角形.如图,将四边形ACBD折叠,使D与C重合,EF为折痕,则ACE的正弦值为 ( ) A. B. C. D.,例2题图,B,二,【思维教练】由ABC为直角三角形,ABD为等边三角形,可得出各线段间的关系,再根据勾股定理求出AE、EC的长度,进而求出ACE的正弦值.,【解析】ABC中,ACB90,BAC30,设AB2a,ACa,BCa;ABD是等边三角形,ADAB2a,设DEECx,则AE2ax,在RtAEC中,由勾股定理,得AE2AC2EC2,即(2ax)23a2x2,解得x ,AE ,EC , sinACE .,练习3 如图,在边长为6的正方形ABCD中,E是边CD的中点,将ADE沿AE对折至AFE,延长EF交边BC于点G,连接AG. (1)求证:BG=FG; (2)求BG的长.,练习3题图,解:(1)证明:如解图,在正方形ABCD中,ADABBCCD,DBBCD90, 将ADE沿AE对折至AFE, ADAF,DEEF,DAFE90, ABAF,BAFG90, 又AGAG, 在RtABG和RtAFG中, ABAF,AGAG, RtABGRtAFG(HL), BGFG;,(2)如解图,设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初中安全培训计划表格式课件
- 先进安全管理方法培训课件
- 化学品防护安全培训课件
- 内蒙医教网的课件
- 古诗三首《望洞庭》公开课一等奖创新教案
- 化学厂区安全培训课件
- 先天性肺囊肿
- 先天性心脏病治疗课件
- 【大单元】二上第四单元 10《日月潭》 +公开课一等奖创新教学设计
- 创业机会概述
- 社会责任CSR培训教材
- 脊柱外科入院宣教
- 医院“十五五”发展规划(2026-2030)
- Unit1AnimalFriendsSectionA1a-1d课件-人教版英语七年级下册
- 2025铁路局劳动合同示范文本
- 教育信息化中的数字孪生技术应用案例分析
- T/CSPSTC 15-2018新型智慧楼宇评价指标体系
- T/CCPITCSC 096-2022名表真假鉴定规范
- 美的分权规范手册
- 质量策划培训
- 能源托管协议书范本
评论
0/150
提交评论