




已阅读5页,还剩35页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,第 七 章,第44讲 立体几何中的向量方法(一)证明平行与垂直,栏目导航,非零,v1v2,存在两个实数x,y,使vxv1yv2,vu,u1u2,v1v2,v1v20,vu,u1u2,u1u20,1思维辨析(在括号内打“”或“”) (1)直线的方向向量是唯一确定的( ) (2)若两直线的方向向量不平行,则两直线不平行( ) (3)若两平面的法向量平行,则两平面平行或重合( ) (4)若空间向量a平行于平面,则a所在直线与平面平行( ),C,3已知直线l的方向向量v(1,2,3),平面的法向量为u(5,2,3),则l与的位置关系是_. 解析:v(1,2,3),(5,2,3), 15223(3)0, v,l或l.,l或l,4设u,v分别是平面,的法向量,u(2,2,5),当v(3,2,2)时,与的位置关系为_;当v(4,4,10)时,与的位置关系为_. 解析:当v(3,2,2)时,v,则,当v(4,4,10)时,v,则.,5如图所示,在正方体ABCDA1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1的中点,则直线ON,AM的位置关系是_.,垂直,(1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键 (2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可这样就把几何的证明问题转化为向量运算,一 利用空间向量证明平行问题,【例1】 如图所示,平面PAD平面ABCD,ABCD为正方形,PAD是直角三角形,且PAAD2,E,F,G分别是线段PA,PD,CD的中点求证:PB平面EFG.,二 利用空间向量证明垂直问题,证明垂直问题的方法 (1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算其中灵活建系是解题的关键 (2)证明直线与直线垂直,只需要证明两条直线的方向向量垂直;证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;证明面面垂直:证明两平面的法向量互相垂直;利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可,【例2】 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABCA1B1C1的所有棱长都为2,D为CC1的中点求证:AB1平面A1BD.,【例3】 如图,在三棱锥PABC中,ABAC,D为BC的中点,PO平面ABC,垂足O落在线段AD上已知BC8,PO4,AO3,OD2. (1)证明APBC; (2)若点M是线段AP上一点,且AM3.试证明平面AMC平面BMC,三 利用空间向量解决探索性问题,对于“是否存在”型问题的探索方式有两种:一种是先根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”,【例4】 如图棱柱ABCDA1B1C1D1的所有棱长都等于2,ABC和A1AC均为60,平面AA1C1C平面ABCD. (1)求证:BDAA1; (2)求二面角DA1AC的余弦值; (3)在直线CC1上是否存在点P,使BP平面DA1C1.若存在,求出点P的位置,若不存在,请说明理由,2如图所示,已知直三棱柱ABCA1B1C1中,ABC为等腰直角三角形,BAC90,且ABAA1,D,E,F分别为B1A,C1C,BC的中点,求证: (1)DE平面ABC; (2)B1F平面AEF.,3如图所示,在四棱锥PABCD中,PC平面ABCD,PC2,在四边形ABCD中,BC90,AB4,CD1,点M在PB上,PB4PM,PB与平面ABCD成30角 (1)求证:CM平面PAD; (2)求证:平面PAB平面PAD.,4在四棱锥PABCD中,PD底面ABCD,底面ABCD为正方形,PDDC,E,F分别是AB,PB的中点 (1)求证:EFCD; (2)在平面PAD内求一点G,使GF平面PCB,并证明你的结论,错因分析:写准点的坐标是关键,要利用中点、向量共线、相等来确定点的坐标利用ab证明直线平行需强调两直线不重合,证明直线与平面平行仍需强调直线在平面外,易错点 坐标系建立不规范、点的坐标易出错,【例1】 如图,在棱长为2的正方体ABCDA1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年阳江市阳春市三上数学期末调研试题含解析
- 自考行政管理文化产业题及答案
- 护理理论在实际中的应用试题及答案
- 执业药师的法律法规理解试题及答案
- 精细化复习策略2025年执业医师考试试题及答案
- 2025年执业护士考试产科护理知识试题及答案
- 现代化进程中的文化冲突试题及答案
- 行政管理备考攻略试题及答案
- 主管护师考试可行性分析试题及答案
- 2025年行政管理运作理论试题及答案
- 古生物基础知识
- 2025年上海市16区初三语文一模试题汇编之古诗文阅读(学生版)
- (2025)发展对象培训班考试试题及参考答案
- 2025年郑州铁路局招聘笔试参考题库含答案解析
- 2025年国家卫生健康委统计信息中心招聘1人管理单位笔试遴选500模拟题附带答案详解
- 2025年高考语文全国新高考Ⅰ卷作文解析及范文
- 基于质谱技术的细胞成像研究
- 市场调查预测题库+答案
- 2024年智能地锁安装与维护协议2篇
- 吉林省安全员-C证考试(专职安全员)题库及答案
- 2024河北高考地理真题卷解析 课件
评论
0/150
提交评论