高考数学大一轮复习 第十四章 选考部分 14_4 坐标系与参数方程 第1课时 绝对值不等式课件 理 苏教版_第1页
高考数学大一轮复习 第十四章 选考部分 14_4 坐标系与参数方程 第1课时 绝对值不等式课件 理 苏教版_第2页
高考数学大一轮复习 第十四章 选考部分 14_4 坐标系与参数方程 第1课时 绝对值不等式课件 理 苏教版_第3页
高考数学大一轮复习 第十四章 选考部分 14_4 坐标系与参数方程 第1课时 绝对值不等式课件 理 苏教版_第4页
高考数学大一轮复习 第十四章 选考部分 14_4 坐标系与参数方程 第1课时 绝对值不等式课件 理 苏教版_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

14.4 不等式选讲,第1课时 绝对值不等式,基础知识 自主学习,课时作业,题型分类 深度剖析,内容索引,基础知识 自主学习,1.绝对值不等式的解法 (1)含绝对值的不等式|x|a的解集:,知识梳理,(a,a),(2)|axb|c(c0)和|axb|c(c0)型不等式的解法: |axb|c ; |axb|c ; (3)|xa|xb|c(c0)和|xa|xb|c(c0)型不等式的解法: 利用绝对值不等式的几何意义求解,体现了数形结合的思想; 利用“零点分段法”求解,体现了分类讨论的思想; 通过构造函数,利用函数的图象求解,体现了函数与方程的思想.,caxbc,axbc或axbc,2.含有绝对值的不等式的性质 (1)如果a,b是实数,则 |ab| ,当且仅当 时,等号成立. (2)如果a,b,c是实数,那么 ,当且仅当 时,等号成立.,|a|b|,|a|b|,ab0,|ac|ab|bc|,(ab),(bc)0,考点自测,1.(2015山东改编)解不等式|x1|x5|2的解集.,解答,当x1时,原不等式可化为1x(5x)2, 42,不等式恒成立,x1. 当1x5时,原不等式可化为x1(5x)2, x4,1x4, 当x5时,原不等式可化为x1(x5)2,该不等式不成立. 综上,原不等式的解集为(,4).,2.若存在实数x使|xa|x1|3成立,求实数a的取值范围.,解答,|xa|x1|(xa)(x1)|a1|, 要使|xa|x1|3有解, 可使|a1|3,3a13,2a4.,3.若不等式|2x1|x2|a2 2对任意实数x恒成立,求实数a的取值范围.,解答,设y|2x1|x2|,当x5;,题型分类 深度剖析,题型一 绝对值不等式的解法,例1 (2015课标全国)已知函数f(x)|x1|2|xa|,a0. (1)当a1时,求不等式f(x)1的解集;,解答,当a1时, f(x)1化为|x1|2|x1|10. 当x1时,不等式化为x40,无解; 当10,解得 0,解得1x2.,(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.,解答,解绝对值不等式的基本方法有 (1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式; (2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式; (3)利用绝对值的几何意义,数形结合求解.,思维升华,跟踪训练1 (1)(2016全国乙卷)已知函数f(x)|x1|2x3|. (1)在图中画出yf(x)的图象;,解答,(2)求不等式|f(x)|1的解集.,解答,题型二 利用绝对值不等式求最值,例2 (1)对任意x,yR,求|x1|x|y1|y1|的最小值.,解答,x,yR, |x1|x|(x1)x|1, |y1|y1|(y1)(y1)|2, |x1|x|y1|y1|123. |x1|x|y1|y1|的最小值为3.,(2)对于实数x,y,若|x1|1,|y2|1,求|x2y1|的最大值.,解答,|x2y1|(x1)2(y1)|x1|2(y2)2|12|y2|25, 即|x2y1|的最大值为5.,求含绝对值的函数最值时,常用的方法有三种 (1)利用绝对值的几何意义. (2)利用绝对值三角不等式,即|a|b|ab|a|b|. (3)利用零点分区间法.,思维升华,解答,跟踪训练2 (1)若关于x的不等式|2 014x|2 015x|d有解,求d的取值范围.,|2 014x|2 015x|2 014x2 015x|1, 关于x的不等式|2 014x|2 015x|d有解时,d1.,(2)(2016苏州二模)不等式|x |a2|sin y对一切非零实数x,y均成立,求实数a的取值范围.,又sin y的最大值为1,,有|a2|1,解得a1,3.,解答,题型三 绝对值不等式的综合应用,(1)求M;,解答,所以f(x)2的解集Mx|1x1.,(2)证明:当a,bM时,|ab|1ab|.,证明,由(1)知,当a,bM时,1a1,1b1, 从而(ab)2(1ab)2a2b2a2b21(a21)(1b2)0, 即(ab)2(1ab)2,因此|ab|1ab|.,(1)解决与绝对值有关的综合问题的关键是去掉绝对值,化为分段函数来解决. (2)数形结合是解决与绝对值有关的综合问题的常用方法.,思维升华,跟踪训练3 (2016全国丙卷)已知函数f(x)|2xa|a. (1)当a2时,求不等式f(x)6的解集;,解答,当a2时,f(x)|2x2|2. 解不等式|2x2|26得1x3. 因此f(x)6的解集为x|1x3.,(2)设函数g(x)|2x1|.当xR时,f(x)g(x)3,求a的取值范围.,解答,课时作业,1.在实数范围内,求不等式|x2|1|1的解集.,解答,由|x2|1|1得1|x2|11,,不等式的解集为0,4.,1,2,3,4,5,6,7,8,9,10,2.不等式log3(|x4|x5|)a对于一切xR恒成立,求实数a的取值范围.,由绝对值的几何意义知:|x4|x5|9, 则log3(|x4|x5|)2, 所以要使不等式log3(|x4|x5|)a对于一切xR恒成立, 则需a2.,解答,1,2,3,4,5,6,7,8,9,10,3.(2016无锡模拟)对于任意实数a,b,已知|ab|1,|2a1|1, 且恒有|4a3b2|m,求实数m的取值范围.,解答,因为|ab|1,|2a1|1,,即|4a3b2|的最大值为6, 所以m|4a3b2|max6.,1,2,3,4,5,6,7,8,9,10,4.已知f(x)|x3|,g(x)|x7|m,若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围.,解答,由题意,可得不等式|x3|x7|m0恒成立, 即(|x3|x7|)minm, 由于x轴上的点到点(3,0)和点(7,0)的距离之和的最小值为4, 所以要使不等式恒成立,则m4.,1,2,3,4,5,6,7,8,9,10,5.(2016常州模拟)求不等式|x3|2x1| 1的解集.,解答,1,2,3,4,5,6,7,8,9,10,解得x2,x2.,1,2,3,4,5,6,7,8,9,10,6.(2016盐城模拟)已知关于x的不等式|2xm|1的整数解有且仅有一个值为2,求关于x的不等式|x1|x3|m的解集.,解答,1,2,3,4,5,6,7,8,9,10,不等式的整数解为2,,再由不等式仅有一个整数解2,m4. 本题即解不等式|x1|x3|4, 当x1时,不等式等价于1x3x4, 解得x0,不等式解集为x|x0. 当1x3时,不等式等价于x13x4,,1,2,3,4,5,6,7,8,9,10,解得x,不等式解集为. 当x3时,不等式等价于x1x34, 解得x4,不等式解集为x|x4. 综上,原不等式解集为(,04,).,1,2,3,4,5,6,7,8,9,10,7.设函数f(x)|2x1|x4|. (1)解不等式f(x)2;,解答,1,2,3,4,5,6,7,8,9,10,方法一 令2x10,x40分别得x ,x4.原不等式可化为:,1,2,3,4,5,6,7,8,9,10,画出f(x)的图象,如图所示.,1,2,3,4,5,6,7,8,9,10,(2)求函数yf(x)的最小值.,解答,1,2,3,4,5,6,7,8,9,10,8.(2016苏州模拟)已知函数f(x)|x3|x2|. (1)求不等式f(x)3的解集;,f(x)|x3|x2|3, 当x2时,有x3(x2)3,解得x2; 当x3时,x3(x2)3,解得x; 当3x2时,有2x13,解得1x2. 综上,f(x)3的解集为x|x1.,解答,1,2,3,4,5,6,7,8,9,10,(2)若f(x)|a4|有解,求a的取值范围.,由绝对值不等式的性质可得, |x3|x2|(x3)(x2)|5, 则有5|x3|x2|5. 若f(x)|a4|有解,则|a4|5, 解得1a9.所以a的取值范围是1,9.,解答,1,2,3,4,5,6,7,8,9,10,9.(2016镇江模拟)已知a和b是任意非零实数.,解答,1,2,3,4,5,6,7,8,9,10,(2)若不等式|2ab|2ab|a|(|2x|2x|)恒成立,求实数x的取值范围.,解答,1,2,3,4,5,6,7,8,9,10,若不等式|2ab|2ab|a|(|2x|2x|)恒成立,,x的取值范围即为不等式|2x|2x|4的解集. 解不等式得2x2, 故实数x的取值范围为2,2.,1,2,3,4,5,6,7,8,9,10,10.已知函数f(x)|2x1|2xa|,g(x)x3. (1)当a2时,求不等式f(x)g(x)的解集;,解答,1,2,3,4,5,6,7,8,9,10,当a2时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论