




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学知识点易错点梳理函数5抽象函数C、1012,思维拓展题,稍有难度,要在方法切入上着力C 2. 抽象函数抽象函数通常是指没有给出函数的具体的解析式,只给出了其它一些条件(如函数的定义域、单调性、奇偶性、解析递推式等)的函数问题.求解抽象函数问题的常用方法是:(1)借助模型函数探究抽象函数:正比例函数型:.指数函数型:.对数函数型:.幂函数型:,.三角函数型:,.,.(2)利用函数的性质(如奇偶性、单调性、周期性、对称性等)进行演绎探究: (3)利用一些方法(如赋值法(令0或1,求出或、令或等)、递推法、反证法等)进行逻辑探究C 14.大小比较常用方法:作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 作商(常用于分数指数幂的代数式);分析法;平方法;分子(或分母)有理化;利用函数的单调性;寻找中间量与“0”比,与“1”比或放缩法;图像法.其中比较法(作差、作商)是最基本的方法.(2009江苏卷10)已知,函数,若实数、满足,则、的大小关系为 . mnD、1314,把关题,考点灵活/题型新颖/方法隐蔽D1.熟知几个重要函数1.(1) 时,为“对勾函数”: 定义域:;值域为; 奇偶性:奇函数(有对称中心); 单调性:在区间上单调递增;在区间上单调递减. 极值:时取到极大值,时取到极小值. 记住的图像的草图. 不等式性质:时,;时, .(2) 时,在区间上为增函数.【思考】:图像大致如何分布.(3)常用地,当时,的特殊性质略.【探究】:函数的图像变化趋势怎样?的有关性质.2.化简为,定义域:;值域为的一切实数;奇偶性:不作讨论;单调性:当时,在区间上单调递增;当时,在区间上单调递减.对称中心是点; 两渐近线:直线和直线;【注意】:两条渐近线分别由分母为零和分子、分母中的系数确定.平移变换:可由反比例函数图像经过平移得到; 3.三次函数图像与性质初步*1.定义:形如的函数叫做三次函数. 定义域为,值域为.*2.解析式:一般式:;零点式:*3.单调性:【探究】:要尝试研究一个陌生函数的一些性质,以往在研究二次函数问题时,我们需要考虑的因素:开口方向;对称轴;端点值;与坐标轴交点;判别式;两根符号.在研究三角函数问题时,又采用过“五点”作图法.那三次函数的图像及性质,要从那里入手呢?再结合探究工具“导数”,我们不妨从函数图像几何特征角度,如零点、极值点、拐点、凹凸性、极值点区间等,确定研究的方向,把握三次函数的一些粗浅性质. 所以,导函数对称轴.【注意】:拐点横坐标所在处,也有可能是驻点所在处.(“极值判别式”,当判别式小于等于零时,无极值点)(一)若 令,由根与系数关系知:, 两极值点:(1)当,约定,则拐点在轴左边,极值点分布在轴左边.根据零点的个数,尝试做出如下图像:(2)当,时,拐点在轴左边,极值点分布在轴两边,且左极值点绝对值大于右极值点绝对值;(3)当,时,拐点在轴右边,极值点分布在轴右边,且左极值点绝对值大于右极值点绝对值.图略(4)当,时,拐点在轴右边,极值点分布在轴两边,且左极值点绝对值小于右极值点绝对值.图略(二)若由知:无极值点,拐点横坐标仍为,所以图像如右图所示.(三)若 即时,在 R上恒成立, 即在为增函数. (-,)(,+)的符号 + 0 +的单调性 *4.极值: 函数在某点取得极值的充要条件是什么?等价表述,和单调性的联系 (1)若,则在R上无极值; (2) 若,则在R上有两个极值;且在处取得极大值,在处取得极小值.*5.零点个数(根的性质)函数的图像与轴有几个交点?和函数的哪些性质相联系?(联系函数的极值,进行等价转化)一个交点:极大值小于0,或者是极小值大于0.也可以表述为“极大值与极小值同号”;两个交点:极大值等于零,或者极小值等于零;三个交点:极大值大于零,极小值小于零.(2009江苏卷3)函数的单调减区间为 . D2.几个重要图像 1.() 2.() 3.() 4.()5. 6.D3.函数的零点处理:(1)的零点(不是点而是数)的根与轴的交点的横坐标的交点问题.(2)注意讨论周期函数(特别是三角函数)在某区间内零点个数问题.(3)零点存在定理:单调且端点值异号使.【说明】:1.方程在上有且只有一个实根,与不等价,前者是后者的一个必要而不是充分条件.特别地,方程有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论