




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第八章 二元一次方程组,8.4 三元一次方程组的解法,1.理解三元一次方程组的概念 2.能解简单的三元一次方程组(重点、难点),学习目标,1.解二元一次方程组有哪几种方法?,2.解二元一次方程组的基本思路是什么?,二元一次方程组,代入,加减,消元,一元一次方程,化二元为一元,化归转化思想,代入消元法和加减消元法,消元法,思考:若含有3个未知数的方程组如何求解?,问题发现 感受新知,三元一次方程组的概念,已知甲、乙、丙三数的和是23,甲数比乙数大1,甲数的两倍与乙数的和比丙数大20,求这三个数.,上述问题中,很自然的想法是,设甲数为x,乙数为y,丙数为z,由题意可得到方程组:,合作探究 获取新知,交流:这个方程组和前面学过的二元一次方程组有什么区别和联系?,在这个方程组中,x+y+z=23和2x+y-z=20都含有三个未知数,并且所含未知数的项的次数都是1,这样的方程叫做三元一次方程. (linear equation with three unknowns),像这样,共含有三个未知数的三个一次方程所组成的一组方程,叫做三元一次方程组.,三元一次方程及三元一次方程组的概念,例如: 是三元一次方程组.,合作探究 获取新知,三元一次方程组的解,类似二元一次方程组的解,三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解.,怎样解三元一次方程组呢?,能不能像以前一样“消元”,把“三元”化成“二元”呢?,合作探究 获取新知,例1:解方程组,解:由方程得 x=y+1 把分别代入得 2y+z=22 3y-z=18 解由组成的二元一次方程组,得 y=8,z=6 把y=8代入,得x=9 所以原方程的解是,x=9 y=8 z=6,类似二元一次方程组的“消元”,把“三元”化成“二元”.,实战演练 运用新知,解三元一次方程组的基本思路是:通过“代入”或“加减”进行 ,把 转化为 ,使解三元一次方程组转化为解 ,进而再转化为解 .,消元,消元,消元,“三元”,“二元”,二元一次方程组,一元一次方程,合作探究 获取新知,例2:在等式 y=ax2bxc中,当x=1时,y=0;当x=2时,y=3;当x=5时,y=60. 求a,b,c的值.,解:根据题意,得三元一次方程组,abc= 0, 4a2bc=3, 25a5bc=60. ,, 得 ab=1 ,,得 4ab=10 ,与组成二元一次方程组,ab=1, 4ab=10.,a=3, b=-2.,解这个方程组,得,把 代入,得,a=3, b=-2,c=-5,a=3, b=-2, c=-5.,因此,实战演练 运用新知,1.解方程组 ,则x_, y_,z_.,xyz11,,yzx5,,zxy1., ,【解析】通过观察未知数的系数,可采取 +求出y, + 求出z,最后再将y与z的值代入任何一个方程求出x即可.,6,8,3,巩固新知 深化理解,2.若x2y3z10,4x3y2z15,则xyz的值为( ) A.2 B.3 C.4 D.5,解析: 通过观察未知数的系数,可采取两个方程相加得,5x+5y+5z=25,所以x+y+z=5.,D,巩固新知 深化理解,3.若|ab1|(b2ac)2|2cb|0,求a,b, c的值,解:因为三个非负数的和等于0,所以每个非负数都为0. 可得方程组 解得,巩固新知 深化理解,4.一个三位数,十位上的数字是个位上的数字的 ,百位上的数字与十位上的数字之和比个位上的数字大1.将百位与个位上的数字对调后得到的新三位数比原三位数大495,求原三位数,解:设原三位数百位、十位、个位上的数字分别为x、y、z.由题意,得 解得 答:原三位数是368.,巩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年手术室护理实践指南试题(附答案)
- 2025年建筑行业安全员A证(四川地区)模拟考试题库试卷(附答案)
- 2025年高级保育考试试题及答案
- 2025年广东省阳江市公务员省考公共基础知识模拟题(附答案)
- 2025年度河北省“安全生产月”知识竞赛试题含参考答案
- 2025年煤矿企业主要负责人考试练习题(附答案)
- 2025年电工单位换算试题及答案
- 2025年麻醉药品、第一类精神药品培训考试题(附答案)
- 妈妈的账单教学课件
- 安全员b证及答案2017江苏
- 创新创业甜品店计划书
- 《钠离子电池简介》课件
- 十八项核心制度
- 情商与领导力课件
- 幼儿园保育员安全培训内容
- 《拒绝服务攻击》课件
- 2024年考研英语核心词汇
- 起重作业十不吊、八严禁
- 核电知识学生科普单选题100道及答案解析
- 钢筋混凝土污水管道施工工程施工组织设计方案
- 百度在线朗读器
评论
0/150
提交评论