2018-2019高三文科数学4月月考仿真试题_第1页
2018-2019高三文科数学4月月考仿真试题_第2页
2018-2019高三文科数学4月月考仿真试题_第3页
2018-2019高三文科数学4月月考仿真试题_第4页
2018-2019高三文科数学4月月考仿真试题_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2018-2019高三文科数学4月月考仿真试题文科数学注意事项:1答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。3非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。4考试结束后,请将本试题卷和答题卡一并上交。第卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的12019?广安期末已知集合 , ,则集合 =( )A B C D22019?齐齐哈尔一模 ( )A B C D32019?济宁一模如图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:日成交量的中位数是16;日成交量超过日平均成交量的有2天;认购量与日期正相关;10月7日认购量的增幅大于10月7日成交量的增幅则上述判断正确的个数为( )A0 B1 C2 D342019?乌鲁木齐一模双曲线 的焦点到渐近线的距离为( )A B C D52019?浏阳一中设 , 都是不等于1的正数,则“ ”是“ ”成立的( )A充要条件 B充分不必要条件C必要不充分条件 D既不充分也不必要条件62019?桂林联考已知等比数列 的前 项和 ,则 ( )A B3 C6 D972019?福建毕业执行如图所示的程序框图,则输出的 的值等于( )A3 B C21 D82019?鹰潭期末如图所示,过抛物线 的焦点 的直线 ,交抛物线于点 , 交其准线 于点 ,若 ,且 ,则此抛物线的方程为( )A B C D92019?南昌一模函数 的图像大致为( )A BC D102019?大连一模已知 的内角 , , 所对边分别为 , , ,且满足 ,则 ( )A B C D112019?南昌一模一个几何体的三视图如图所示,则该几何体的体积为( )A B C D122019?龙岩一中已知函数 ,若函数 恰有两个零点,则实数 的取值范围为( )A B C D第卷二、填空题:本大题共4小题,每小题5分132019?临川一中设向量 , 满足 , ,且 ,则向量 在向量 方向上的投影为_142019?榆林一中设 , 满足约束条件 ,则 的最大值为_152019?湘潭一模已知球的半径为4,球面被互相垂直的两个平面所截,得到的两个圆的公共弦长为 ,若球心到这两个平面的距离相等,则这两个圆的半径之和为_162019?七宝中学在 内使 成立的 的取值范围是_三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤17(12分)2019?新乡期末已知数列 满足 , (1)证明:数列 是等比数列;(2)设 ,求数列 的前 项和 18(12分)2019?南昌一模市面上有某品牌 型和 型两种节能灯,假定 型节能灯使用寿命都超过5000小时,经销商对 型节能灯使用寿命进行了调查统计,得到如下频率分布直方图:某商家因原店面需要重新装修,需租赁一家新店面进行周转,合约期一年新店面需安装该品牌节能灯5支(同种型号)即可正常营业经了解, 型20瓦和 型55瓦的两种节能灯照明效果相当,都适合安装已知 型和 型节能灯每支的价格分别为120元、25元,当地商业电价为 元/千瓦时假定该店面一年周转期的照明时间为3600小时,若正常营业期间灯坏了立即购买同型灯管更换(用频率估计概率)(1)根据频率直方图估算 型节能灯的平均使用寿命;(2)根据统计知识知,若一支灯管一年内需要更换的概率为 ,那么 支灯管估计需要更换 支若该商家新店面全部安装了 型节能灯,试估计一年内需更换的支数;(3)若只考虑灯的成本和消耗电费,你认为该商家应选择哪种型号的节能灯,请说明理由19(12分)2019?菏泽一模如图,在四棱柱 中, 底面 , ,四边形 是边长为4的菱形, , , 分别是线段 的两个三等分点(1)求证: 平面 ;(2)求四棱柱 的表面积20(12分)2019?临川一中已知椭圆 ,离心率 , 是椭圆的左顶点, 是椭圆的左焦点, ,直线 (1)求椭圆 方程;(2)直线 过点 与椭圆 交于 、 两点,直线 、 分别与直线 交于 、 两点,试问:以 为直径的圆是否过定点,如果是,请求出定点坐标;如果不是,请说明理由21(12分)2019?太原期末已知函数 (1)当 时,求函数 的单调区间;(2)若 对任意 恒成立,求 的取值范围请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分22(10分)【选修4-4:坐标系与参数方程】2019?大连一模在平面直角坐标系 中,曲线 的参数方程为 ( 为参数且 ),曲线 的参数方程为 ( 为参数,且 ),以 为极点, 轴的正半轴为极轴建立极坐标系,曲线 的极坐标方程为: ,曲线 的极坐标方程为 (1)求 与 的交点到极点的距离;(2)设 与 交于 点, 与 交于 点,当 在 上变化时,求 的最大值23(10分)【选修4-5:不等式选讲】2019?东北三校已知函数 , (1)若不等式 对 恒成立,求实数 的取值范围;(2)设实数 为(1)中 的最大值,若实数 , , 满足 ,求的最小值2018-2019学年下学期高三4月月考卷文科数学答案一、选择题1【答案】A【解析】由题意 ; 故选A2【答案】B【解析】 ,故选B3【答案】B【解析】7天假期的楼房认购量为91、100、105、107、112、223、276;成交量为8、13、16、26、32、38、166对于,日成交量的中位数是26,故错;对于,日平均成交量为 ,有1天日成交量超过日平均成交量,故错;对于,根据图形可得认购量与日期不是正相关,故错;对于,10月7日认购量的增幅大于10月7日成交量的增幅,正确故选B4【答案】D【解析】根据题意,双曲线的方程为 ,其焦点坐标为 ,其渐近线方程为 ,即 ,则其焦点到渐近线的距离 ,故选D5【答案】D【解析】由 ,可得 ;由 ,得 所以当“ ”成立时,“ ”不成立;反之,当“ ”成立时,“ ”也不成立,所以“ ”是“ ”成立的既不充分也不必要条件故选D6【答案】D【解析】因为 ,所以 时, ,两式相减,可得 , , ,因为 是等比数列,所以 ,所以 , , , ,所以 ,故选D7【答案】B【解析】由题意得,程序执行循环共六次,依次是 , ; , ;, ; , ;, ; , ,故输出 的值等于 ,故选B8【答案】A【解析】如图,过 作 垂直于抛物线的准线,垂足为 ,过 作 垂直于抛物线的准线,垂足为 , 为准线与 轴的交点,由抛物线的定义, , ,因为 ,所以 ,所以 , ,所以 ,即 ,所以抛物线的方程为 ,故选A9【答案】A【解析】 ,即 ,故 为奇函数,排除C,D选项;,排除B选项,故选A10【答案】A【解析】 , ,由 ,根据正弦定理:可得 ,所以 ,那么 ,故选A11【答案】D【解析】由三视图可知该几何体是由一个正三棱柱(其高为6,底面三角形的底边长为4,高为 )截去一个同底面的三棱锥(其高为3)所得,则该几何体的体积为 ,故选D12【答案】C【解析】作出函数 的图象,函数 恰有两个零点,即为 的图象和直线 有两个交点,当直线 与 相切,可得 有两个相等实根,可得 ,即 ,由图象可得当 时, 的图象和直线 有两个交点,故选C二、填空题13【答案】【解析】由于 ,所以 ,即 , ,所以向量 在向量 方向上的投影为 14【答案】5【解析】作出 , 满足约束条件 ,所示的平面区域,如图:作直线 ,然后把直线 向可行域平移,结合图形可知,平移到点 时 最大,由 ,此时 ,故答案为515【答案】6【解析】设两圆的圆心为 ,球心为 ,公共弦为 ,中点为 ,因为球心到这两个平面的距离相等,则 为正方形,两圆半径相等,设两圆半径为 , , ,又 , , , 这两个圆的半径之和为616【答案】【解析】由题意,设 , , ,又 恒成立, ,即 ,即 时, , 内使 成立的 的取值范围是 故答案为 三、解答题17【答案】(1)详见解析;(2) 【解析】(1)证明:数列 满足 , ,可得 ,即有数列 是首项为2,公比为3的等比数列(2)由(1)可得 ,即有 ,数列 的前 项和 18【答案】(1)3440小时;(2)4;(3)应选择 型节能灯【解析】(1)由图可知,各组中值依次为3100,3300,3500,3700,对应的频率依次为 , , , ,故 型节能灯的平均使用寿命为 小时(2)由图可知,使用寿命不超过3600小时的频率为 ,将频率视为概率,每支灯管需要更换的概率为 ,故估计一年内5支 型节能灯需更换的支数为 (3)若选择 型节能灯,一年共需花费 元;若选择 型节能灯,一年共需花费 元因为 ,所以该商家应选择 型节能灯19【答案】(1)见解析;(2) 【解析】(1)连接 与 交于点 ,则 为 的中点,连接 ,因为 , 分别是线段 的两个三等分点,所以 是线段 的中点,又因为 是线段 的中点,所以 ,又因为 平面 , 平面 ,所以 平面 (2)因为四边形 是边长为4的菱形, ,且 底面 ,所以侧面为四个全等的矩形,所以四个侧面的面积为 因为 平面 ,连接 , ,所以四边形 是矩形,又 ,所以四边形 是正方形,所以 ,所以 ,所以 ,所以四棱柱 的表面积为 20【答案】(1) ;(2)以 为直径的圆能过两定点 、 【解析】(1) ,得 ,所求椭圆方程 (2)当直线 斜率存在时,设直线 , 、 ,直线 ,令 ,得 ,同理 ,以 为直径的圆 ,整理得 ,得 , 将代入整理得 ,令 ,得 或 当直线 斜率不存在时, 、 、 、 ,以 为直径的圆 ,也过点 、 两点,综上:以 为直径的圆能过两定点 、 21【答案】(1)函数 的单调增区间为 ,单调减区间为 ;(2) 【解析】(1)由 ,则 由 ,得 ;由 ,得 ,所以函数 的单调增区间为 ,单调减区间为 (2)由 ,则 当 时,对 ,有 ,所以函数 在区间 上单调递增,又 ,即 对 恒成立当 时,由(1), 单调递增区间为 ,单调递减区间为 ,若 对任意 恒成立,只需 ,令 , ,即 在区间 上单调递减,又 ,故 在 上恒成立,故当 时,满足 的 不存在综上所述, 的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论