




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
清水河县三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知函数f(x)=x(1+a|x|)设关于x的不等式f(x+a)f(x)的解集为A,若,则实数a的取值范围是( )ABCD2 函数f(x)=x22ax,x1,+)是增函数,则实数a的取值范围是( )ARB1,+)C(,1D2,+)3 过点P(2,2)作直线l,使直线l与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l一共有( )A3条B2条C1条D0条4 函数y=sin(2x+)图象的一条对称轴方程为( )Ax=Bx=Cx=Dx=5 设定义在R上的函数f(x)对任意实数x,y,满足f(x)+f(y)=f(x+y),且f(3)=4,则f(0)+f(3)的值为( )A2B4C0D46 的外接圆圆心为,半径为2,为零向量,且,则在方向上的投影为( )A-3 B C3 D7 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( )A1BCD8 函数的定义域为( )Ax|1x4Bx|1x4,且x2Cx|1x4,且x2Dx|x49 “”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性.10设0a1,实数x,y满足,则y关于x的函数的图象形状大致是( )ABCD11已知集合( )A B C D【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力12若关于的不等式的解集为,则参数的取值范围为( )A B C D【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.二、填空题13在等差数列中,其前项和为,若,则的值等于 .【命题意图】本题考查等差数列的通项公式、前项和公式,对等差数列性质也有较高要求,属于中等难度.14已知z,为复数,i为虚数单位,(1+3i)z为纯虚数,=,且|=5,则复数=15设集合 ,满足,求实数_.16【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy中,P是曲线上一点,直线经过点P,且与曲线C在P点处的切线垂直,则实数c的值为_17某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是毫克,若该患者坚持长期服用此药明显副作用(此空填“有”或“无”)18满足关系式2,3A1,2,3,4的集合A的个数是三、解答题19如图,在三棱柱中,(1)求证:平面;(2)若,求三棱锥的体积20在ABC中,内角A,B,C所对的边分别是a,b,c,已知tanA=,c=()求;()若三角形ABC的面积为,求角C21已知等差数列满足:=2,且,成等比数列。(1) 求数列的通项公式。(2)记为数列的前n项和,是否存在正整数n,使得若存在,求n的最小值;若不存在,说明理由.22某港口的水深y(米)是时间t(0t24,单位:小时)的函数,下面是每天时间与水深的关系表:t03691215182124y10139.97101310.1710经过长期观测,y=f(t)可近似的看成是函数y=Asint+b(1)根据以上数据,求出y=f(t)的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?23设函数f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=f(x),当x0,2时,f(x)=2xx2(1)求证:f(x)是周期函数;(2)当x2,4时,求f(x)的解析式;(3)求f(0)+f(1)+f(2)+f(2015)的值24已知函数f(x)=loga(x2+2),若f(5)=3;(1)求a的值; (2)求的值; (3)解不等式f(x)f(x+2)清水河县三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】 A【解析】解:取a=时,f(x)=x|x|+x,f(x+a)f(x),(x)|x|+1x|x|,(1)x0时,解得x0;(2)0x时,解得0;(3)x时,解得,综上知,a=时,A=(,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,f(x+a)f(x),(x+1)|x+1|+1x|x|,(1)x1时,解得x0,矛盾;(2)1x0,解得x0,矛盾;(3)x0时,解得x1,矛盾;综上,a=1,A=,不合题意,排除C,故选A【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用2 【答案】C【解析】解:由于f(x)=x22ax的对称轴是直线x=a,图象开口向上,故函数在区间(,a为减函数,在区间a,+)上为增函数,又由函数f(x)=x22ax,x1,+)是增函数,则a1故答案为:C3 【答案】C【解析】解:假设存在过点P(2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,设直线l的方程为:,则即2a2b=ab直线l与两坐标轴在第二象限内围成的三角形面积S=ab=8,即ab=16,联立,解得:a=4,b=4直线l的方程为:,即xy+4=0,即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题4 【答案】A【解析】解:对于函数y=sin(2x+),令2x+=k+,kz,求得x=,可得它的图象的对称轴方程为x=,kz,故选:A【点评】本题主要考查正弦函数的图象的对称性,属于基础题5 【答案】B【解析】解:因为f(x)+f(y)=f(x+y),令x=y=0,则f(0)+f(0)=f(0+0)=f(0),所以,f(0)=0;再令y=x,则f(x)+f(x)=f(0)=0,所以,f(x)=f(x),所以,函数f(x)为奇函数又f(3)=4,所以,f(3)=f(3)=4,所以,f(0)+f(3)=4故选:B【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f(x)为奇函数是关键,考查推理与运算求解能力,属于中档题6 【答案】B【解析】考点:向量的投影7 【答案】C【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为因此可知:A,B,D皆有可能,而1,故C不可能故选C【点评】正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键8 【答案】B【解析】解:要使函数有意义,只须,即,解得1x4且x2,函数f(x)的定义域为x|1x4且x2故选B9 【答案】A【解析】因为在上单调递增,且,所以,即.反之,当时,(),不能保证,所以“”是“”的充分不必要条件,故选A.10【答案】A【解析】解:0a1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y轴对称,在(0,+)上单调递增,且函数的图象经过点(0,1),故选:A【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题11【答案】D【解析】,故选D.12【答案】A 二、填空题13【答案】14【答案】(7i) 【解析】解:设z=a+bi(a,bR),(1+3i)z=(1+3i)(a+bi)=a3b+(3a+b)i为纯虚数,又=,|=,把a=3b代入化为b2=25,解得b=5,a=15=(7i)故答案为(7i)【点评】熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出15【答案】【解析】考点:一元二次不等式的解法;集合的运算.【方法点晴】本题主要考查了集合的综合运算问题,其中解答中涉及到一元二次不等式的解法、集合的交集和集合的并集的运算、以及一元二次方程中韦达定理的应用,试题有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,同时考查了转化与化归思想的应用,其中一元二次不等式的求解是解答的关键.16【答案】4ln2【解析】点睛:曲线的切线问题就是考察导数应用,导数的含义就是该点切线的斜率,利用这个我们可以求出点的坐标,再根据点在线上(或点在曲线上),就可以求出对应的参数值。17【答案】, 无【解析】【知识点】等比数列【试题解析】设该病人第n次服药后,药在体内的残留量为毫克,所以)=300,=350由,所以是一个等比数列,所以所以若该患者坚持长期服用此药无明显副作用。故答案为:, 无 18【答案】4 【解析】解:由题意知,满足关系式2,3A1,2,3,4的集合A有:2,3,2,3,1,2,3,4,2,3,1,4,故共有4个,故答案为:4三、解答题19【答案】(1)证明见解析;(2).【解析】试题分析:(1)有线面垂直的性质可得,再由菱形的性质可得,进而有线面垂直的判定定理可得结论;(2)先证三角形为正三角形,再由于勾股定理求得的值,进而的三角形的面积,又知三棱锥的高为,利用棱锥的体积公式可得结果.考点:1、线面垂直的判定定理;2、勾股定理及棱锥的体积公式.20【答案】 【解析】解:()由题意知,tanA=,则=,即有sinAsinAcosC=cosAsinC,所以sinA=sinAcosC+cosAsinC=sin(A+C)=sinB,由正弦定理,a=b,则=1;()因为三角形ABC的面积为,a=b、c=,所以S=absinC=a2sinC=,则,由余弦定理得, =,由得,cosC+sinC=1,则2sin(C+)=1,sin(C+)=,又0C,则C+,即C+=,解得C= 【点评】本题考查正弦定理,三角形的面积公式,以及商的关系、两角和的正弦公式等,注意内角的范围,属于中档题21【答案】见解析。【解析】(1)设数列an的公差为d,依题意,2,2+d,2+4d成比数列,故有(2+d)2=2(2+4d),化简得d24d=0,解得d=0或4,当d=0时,an=2,当d=4时,an=2+(n1)4=4n2。(2)当an=2时,Sn=2n,显然2n60n+800,此时不存在正整数n,使得Sn60n+800成立,当an=4n2时,Sn=2n2,令2n260n+800,即n230n4000,解得n40,或n10(舍去),此时存在正整数n,使得Sn60n+800成立,n的最小值为41,综上,当an=2时,不存在满足题意的正整数n,当an=4n2时,存在满足题意的正整数n,最小值为4122【答案】 【解析】解:(1)由表中数据可以看到:水深最大值为13,最小值为7,=10,且相隔9小时达到一次最大值说明周期为12,因此,故(0t24)(2)要想船舶安全,必须深度f(t)11.5,即,解得:12k+1t5+12k kZ又0t24当k=0时,1t5;当k=1时,13t17;故船舶安全进港的时间段为(1:005:00),(13:0017:00)【点评】本题主要考查三角函数知识的应用问题解决本题的关键在于求出函数解析式求三角函数的解析式注意由题中条件求出周期,最大最小值等23【答案】 【解析】(1)证明:f(x+2)=f(x),f(x+4)=f(x+2)+2=f(x+2)=f(x),y=f(x)是周期函数,且T=4是其一个周期(2)令x2,0,则x0,2,f(x)=2xx2,又f(x)=f(x),在x2,0,f(x)=2x+x2,x2,4,那么x42,0,那么f(x4)=2(x4)+(x4)2=x26x+8,由于f(x)的周期是4,所以f(x)=f(x4)=x26x+8,当x2,4时,f(x)=x26x+8(3)当x0,2时,f(x)=2xx2f(0)=0,f(1)=1,当x2,4时,f(x)=x26x+8,f(2)=0,f(3)=1,f(4)=0f(1)+f(2)+f(3)+f(4)=1+01+0=0,y=f(x)是周期函数,且T=4是其一个周期2016=4504f(0)+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国防腐木市场供需格局及投资规划研究
- 中国三合一复合布行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 承德杭氧气体有限公司介绍企业发展分析报告模板
- 2025年 湖北大学专业技术岗位招聘考试笔试试题附答案
- 2025年 广西百色工业投资发展集团有限公司招聘考试笔试试题附答案
- 2024-2030年中国电脑设备行业市场发展监测及投资方向研究报告
- 2024年全球及中国箱式取芯取样设备行业头部企业市场占有率及排名调研报告
- 高新区段综合治理工程可行性研究报告的审查意见
- 2025年中国吸引胶管解绳机市场发展现状调查及投资趋势前景分析报告
- 2021-2026年中国铝塑门窗行业投资分析及发展战略咨询报告
- 2019年4月27日山东省纪委监委遴选公务员考试真题及答案
- ktv包房服务员岗位职责8篇
- 西安某大跨度钢桁架人行天桥结构设计分析
- 新疆全部及全国部分加气站分布情况6
- 初中学段劳动任务清单(七到九年级)
- 2023年中国各地磁偏角
- 六维领导力专题知识
- 【护士资格考试】云南省精神病医院模拟检测练习题
- 高温高压设备警示牌
- YY 0731-2009大型蒸汽灭菌器手动控制型
- GB/T 3246.2-2000变形铝及铝合金制品低倍组织检验方法
评论
0/150
提交评论