改进人工蜂群算法在城市医院布局中的应用研究.docx_第1页
改进人工蜂群算法在城市医院布局中的应用研究.docx_第2页
改进人工蜂群算法在城市医院布局中的应用研究.docx_第3页
全文预览已结束

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

改进人工蜂群算法在城市医院布局中的应用研究 摘 要 医院作为城市公共设施的重要组成部分,合理的城市医院布局直接关系到城市未来的发展以及城市居民幸福指数的高低。在充分了解城市医院布局影响因素的条件下,基于城市医院布局的公平性、充足性和易达性等原则,运用引力可达性等模型,构造出多目标数学规划模型。其次利用改进的人工蜂群算法对数学模型进行算法设计。最后借助MATLAB软件进行仿真计算。实验证明,改进后的人工蜂群算法寻优能力更强,在求解城市医院布局问题上表现出更大的优越性。 下载 关键词 城市医院布局;引力可达性模型;多目标规划模型;改进人工蜂群算法 doi : 10 . 3969 / j . issn . 1673 - 0194 . 2017. 15. 078 中图分类号 R197.3;TU246.1 文献标识码 A 文章编号 1673 - 0194(2017)15- 0173- 05 0 引 言 21世纪,经济的快速发展使得城市化进程不断地加快,从而导致城市空间结构、人口分布均发生了巨大的变化。城市居民在满足物质生活的同时,渐渐地将关注的重心转移到医疗卫生上。但是现有的医疗服务设施既不能满足城市日新月异的变化,更不能满足城市居民对健康生活的追求。基于此,本文提出了利用改进人工蜂群算法求解城市医院布局问题。 影响城市医院布局的因素有很多,例如原有医院的布局、行政区域划分情况、区域交通状况、人口分布结构以及区域经济发展水平等,在构造城市医院布局的多目标数学模型时需充分考虑这些因素。同时人工蜂群算法由于其控制参数少、鲁棒性强等优点而受到了广大学者的关注,本文在原有人工蜂群算法的基础上进行适当的算法改进,使得改进后的人工蜂群算法收敛更快、寻优能力更强。 1 多目标数学规划模型 在对城市医院进行布局时,需要时刻保证城市医院布局的公平性和充足性,医疗资源在研究区内的平均分布,医院的可达性以及城市医院建设的投资成本。与此同时,为了保障所建立的城市医院布局模型更加的合理有效,需要作出以下几点说明: (1)医院主要分为综合医院、中医院和专科医院,为了简化医院类型,本文主要考虑公立综合医院的影响; (2)由于每一个乡镇、街道都有自己的卫生院,为了简化研究问题的复杂度,故本模型不考虑一级卫生所的影响,只考虑具有床位的二级、三级医院; (3)模型中采用离散型变量代替该乡镇、街道的人口分布点; (4)人口分布点与医院之间的距离以直线距离计算; (5)研究区域内的城市居民只在研究区域内的医院就医,忽略外出就医情况的存在。 假设研究区域共有A个行政县、区和I个人口分布点,其中a(a=1,2,A),表示第a个行政县、区内人口分布点的集合,每个县、区共有a个人口分布点,其中Dak(k=1,2,a)表示第a个行政县、区的第k个人口分布点,人口分布点的空间位置坐标表示为(xi,yi)(i=1,2,I),并且该人口分布点的人口数为Di(p),占研究区域总人数的比重为i,人口分布点i的年就医人次数为Gi。与此同时,该研究区域内现有二级医院B个,三级医院C个,拟建设二级医院M个,三级医院N个,每个医院拥有的床位数为Wj,每个医院的空间位置坐标为(xj,yj),每个医院的年门诊数为Pj。uij表示第i个人口分布点每年前往第j个三级医院的就医人次数,vik表示第i个人口分布点每年前往第k个二级医院的就医人次数,现建立以下数学模型。 在上述模型中,式(1)的目标是使乡镇、街道之间的引力可达性指数方差最小化,从而保证研究区域内城市居民就医空间可达的公平性;式(2)的目标是使研究区域内的城市居民与医疗资源之间的权重距离总和最小化,从而实现医疗资源在研究区域内的平均分布;式(3)是引力可达性指数的计算公式;式(4)表示的是研究区域内各乡镇、街道的平均引力可达性指数;式(5)表示的是医院竞争强度的具体计算公式;式(6)表示研究区域内人口分布点的集合等于所有行政县、区内人口分布点的集合,该公式是为了保证所有的人口分布点都在研究区域范围内;式(7)表示任意两个行政县、区内人口分布点的集合不存在交集;式(8)表示某个人口分布点每年前往三级医院和二级医院的总就医人次数等于该人口分布点的年就医人次数,该公式是为了排除人口分布点在研究区域外就医的可能性;式(9)表示在忽略距离的情况下,根据现有医院的年门诊数以及人口分布点的人口权重求得该人口分布点的年就医人次数;式(10)表示对任何一家医院接受任何一个人口分布点的年就医人次数进行约束,大于等于0,小于等于该人口分布点的年就医人次数;式(11)表示任何一家二级医院年接受的就医人次数不会超过二级医院的年收治能力上限;式(12)表示任何一家三级医院年接受的就医人次数不会超过三级医院的年收治能力上限;式(13)表示二级医院的年收治能力上限不超过三级医院的年收治能力上限。 其中,式(2)中的表示城市居民相对于二级医院,对三级医院的偏好系数,ij3,ik2分别表示人口分布?ci与三级医院j和二级医院k之间的交通系数;式(4)中的表示摩擦系数,研究表明,一般在12之间进行取值。 2 算法设计 在对城市医院布局数学模型进行多目标人工蜂群算法流程设计时,首先对算法设计中的一些专业名词进行阐述: 定义1 可行解和可行解集。满足约束条件的决策变量x称为可行解,所有决策变量x的集合称为可行解集。 定义3 拥挤距离的引入是用来表征个体间的拥挤程度,即某前端中的某个体与该前端中其他个体之间的距离。该值越大说明个体间就越不拥挤,种群的多样性就越好。 定义4 Pareto最优和Pareto最优解集 若某个决策变量x*满足以下条件 则称x*为Pareto最优解,所有Pareto最优解组成的集合就是Pareto最优解集。 定义5 Pareto前端。由Pareto最优解集中的最优解计算出的目标函数值组成的集合称为Pareto前端。 多目标人工蜂群算法流程如下所示: (1)初始化阶段,包括参数初始化、外部档案的初始化和种群初始化。根据Pareto支配原则,将初始化种群中的所有非劣解加入到外部档案中,完成外部档案的初始化。其中种群初始化可根据下式产生: Xij=Xjmin+rand(0,1)(Xjmax-Xjmin) 其中i=1SN,j=1D,SN是蜜源的个数,D是问题的维数。 (2)采蜜蜂阶段,根据下面的领域搜索公式,在外部档案中非劣解的周围进行邻域搜索,并通过Pareto支配原则判断新前后解之间的支配关系,保留较优的解。 Vij=Xij+?准ij(Xij-Xkj) 其中k为不同于i的蜜源,j为随机选择的上标,?准ij为-1,1之间的随机数,它控制着Xij邻域内蜜源位置的产生。 (3)根据下式计算所有解相应的跟随概率。 其中fiti是第i的食物源的适应度值,SN是食物源的数量。 (4)观察蜂阶段,通过跟随概率随机选择一个非劣解,并根据上述的邻域搜索公式进行邻域搜索。 (5)侦查蜂阶段,将trial达到Limit限定的解抛弃,并随机产生一个新的解。 (6)外部档案的更新,将当前种群中的Pareto最优解加入外部档案,当达到外部档案的最大值时,根据拥挤距离对外部档案进行裁剪更新。 (7)最终输出外部档案的所有解作为最终的优化结果。 3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论