零件图合集.png
零件图合集.png

小型抽水泵入水三通塑料件注射模具设计【优秀含CAD图+说明书+文献翻译】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图
编号:18316658    类型:共享资源    大小:6.76MB    格式:RAR    上传时间:2019-04-28 上传人:hon****an IP属地:江苏
30
积分
关 键 词:
优秀含CAD图+说明书+文献翻译 小型抽水泵入水三通塑料件 模具设计【优秀含CAD图纸 注射模具设计【优秀含 CAD图纸+塑料模具 模具设计【优秀含 CAD图纸+注射 注射模具设计 CAD图纸+
资源描述:


内容简介:
文资料翻译CAD/CAE一体化的注塑模具设计系统伊万马丁和米奥德拉格和扬科蒂普萨乔尔杰卢基奇德扬收稿日期:2011年7月27日/接受日期:2012年1月10日/在线发布时间:2012年1月25日施普林格出版社伦敦有限公司2012摘要 抽象的模具设计是一个知识密集型的过程。本文描述了一个面向知识型的参数, 模块化、基于特征综合计算机辅助设计/计算机辅助工程为模具设计系统(CAD / CAE)。数值CAx系统的发展在模拟注塑成型和模具设计上有了新的可能性的产品分析。该系统集成了Pro /工程师专门开发模块的注塑参数的计算,模具设计,模具元素的选择。系统接口使用参数和CAD / CAE特征数据库,以简化设计、编辑和审查的过程。还提出了总体结构和输出结果的一部分提出CAD / CAE完整的注塑模具设计系统。关键词: 模具设计; 数值模拟; 计算机辅助设计; CAE 1介绍注塑过程是最常用的塑料零件成型工艺。总得来说,塑料注塑设计包括塑料产品设计, 模具设计和注塑工艺设计, 所有这些都有助于塑造产品的质量也有助于生产效率【1】. 这过程涉及许多设计参数,需要考虑以并行的方式。塑料注塑计算机辅助模具设计在很长一段时间内集中了许多世界范围内的作者。不同作者开发部分程序系统来帮助工程师设计开发,模具,注塑和选择参数。在过去的十年里,许多作者开发了计算机辅助设计/计算机辅助工程(CAD / CAE)为塑料注塑模具设计系统。2 开发一个协作集成设计系统并发模具设计中CAD模具基地网络,使用Pro / E。3 标准化开发一个应用程序的初始设计的注塑模具。这个系统能够选择和管理标准模具模架,但不提供模具和注塑的计算。作者提出了一个标准化的方法根据注塑模具型腔布局设计系统,只有标准腔布局使用。当使用标准布局,布局配置可以很容易地存储在数据库中。(4、5) 描述一个三维图模具结构设计系统基于功能特性用一组最少的初始信息。此外, 它也适用于设计实体模型中分配功能特性灵活的主要部分模具。本设计系统包括模块模具组件的选择和计算。它使用Pro / E Program和Pro / Toolkit /程序,模块,由模块模选择、修改和设计。6、7 分析了CAD / CAE集成的开发。作者还分析了系统和CAD和CAE系统之间数值模拟的注塑和模具设计的集成问题。作者提出了一个功能组成的本体CAD / CAE功能。这个特性不仅代表塑料零件的几何信息,而且设计意图是面向分析。部分功能包含塑料部分的整体产品信息, 墙功能、发展功能(如倒角、孔,等等), 墙和发展特点是所谓的“组件功能”。.(8、9)开发了一个模具设计和注塑CAE系统参数计算。该系统是基于形态学矩阵和决策图。该系统用于热、流变和力学计算,和物质基础管理, 但是没有集成商业CAx软件。10开发注塑设计系统。他们使用的数据库是面向参数和特点。系统使用Pro / E为建模数据库组件。11开发了参数化三维塑料注塑模具设计系统集成了坚实的作品。模块一塑料材料数据库模具数据库水线,销孔设计设计为非标准组件模具设计模块四选择类型标准模具组件和部件最终的模具尺寸计算Mcchanical 计算模计算模热模计算成型工艺参数的计算模块三可接受的几何模型和注射成型工艺参数注塑成型数值模拟模块二CAD零件建模开始图1用于塑料产品的一般结构集成的注塑模具设计系统其他知识为基础的系统,如IMOLD,ESMOLD,IKMOULD和IKBMOULD,已经开发了用于注塑模具设计. IMOLD分为模具设计成四主要步骤;分型面的设计,印象设计,系统设计和模具底座设计。该软件使用基于知识的CAD系统提供的交互式环境,协助设计人员快速完成模具设计,促进了模具设计的标准化过程。IKB-模具应用程序由数据库和知识库的模具制造。12开发了一个集成的基于知识的系统模架设计。该系统具有用于压印计算模块,维数计算,模数的计算和选择注塑机。该系统使用Pro /模架库。本文介绍了KBS和关键技术,如产品造型,帧治法,和神经网络。多层神经网络已经通过训练反向传播BP。该神经网络采用长度,宽度,高度和零件在模具中的数量为输入和9的参数(长度,宽度,以及向上和高度下设置的,模架边厚度,底部厚度芯,和型腔板)作为输出。 13,14发展智能协同KBS的注射模具。莫在埃尔。15开发了一种有效的再利用和检索系统,可以用一个简单的图形建模注册标准件在用户界面即使是设计者也可能不知道规则来登记数据库。模具设计系统的开发使用开放API和商用CAD /计算机辅助制造(CAM)/ CAE解决方案。该系统是适用于现代的模架和模具零件标准化重要工具。该系统采用了编辑设计的方法实现了主模型。所开发的系统提供了方法,使设计人员可以登记的母模,其被定义为的函数三维CAD,作为标准件及有效地重用标准件即使他们不承认数据库的规则。 16开发的自动化软件解决方案工艺设计制造塑料注射模具。这种CAD / CAPP / CAM系统不提供CAE计算的注塑参数和模具设计。 17利用CAE机械,热和流变计算。他们分析了物理,塑料材料的机械和热性能。他们定义的关键参数或装入一部分。18试图开发该系统的所有这将满足所有注射模塑成形的供选择的部分的需要模具技术体系。仿真结果包括几何和制造业数据。仿真结果表明,部分设计师可以优化零件的几何形状,而模具设计师能够优化运行和模具的冷却系统。作者开发了一个程序所有这些都有助于注塑的程序员模拟机直接传输数据到设备。Zhou等人1开发的虚拟注射成型系统基于数值模拟。19开发注塑模具设计标准组件库使用面向对象的方法。这是一种面向对象库模型定义的机械部件参数。他们开发了一个面向对象的模构件库模型结合不同几何拓扑和非几何信息。在多年来,许多研究人员试图将整个自动化使用各种基于知识的工程模具设计过程(KBE)的方法,基于规则的推理(RBR)和案例库(CBR)和参数化设计模板(PDT)。20开发了一种三维CAD知识为基础的辅助注塑模具设计系统(IKB模具)。在他们的研究中,由经验丰富的模具设计师和手册通过各种传统的知识获取过程获得设计规则和模具设计的专业知识。传统的方法有KBE, RBR,CBR和简单的PDT已成功地应用于模腔和一个模具产品的亚军布局设计自动化。模块3创建数值模拟报告可接受的几何模型和IM指标的影响分析结果建议门定位器测定中的位置模拟注射成型第一步转换CAD模型到模块2门定位器的数量材料的选择和确定注射成型工艺参数图二 模块用于注射的数值模拟结构成型工艺21提出了一种基于特征和面向对象分层表示和简化的几何符号接近自动化模具装配建模。该各种系统的前面提到的分析表明,作者用不同的方法来解决模具问题把它简化成模具配置器(选择器)的设计。他们采用CAD / CAE集成,用于创建精确的规则模架的选择。许多作者使用的CAE系统是注塑成型数值模拟定义参数或注射成型。有几个用的是开发的原创CAE模块,用于模具和注塑过程的计算。然而,前面提到的所有系统是缺少模块的模具和注塑成型的计算所有这些参数将允许与结果整合数值模拟。这导致的结论是,有一个需要建立一个软件系统集成了哪些参数注射成型,其结果通过数值获得模拟注塑,模具的计算和选择。所有这一切都将被集成到CAD / CAE注塑模具设计系统的塑料制品。图3 形式来定义模具的几何形状2集成的CAD / CAE系统的结构如众所周知的那样,不同的计算方法为不同的作者的支持,模具设计系统使用的设计如KBE(RBR,CBR,PDT)或自动化技术如传统(NLP,LP,设计优化技术BB,GBA,IR,HR)或启发式搜索,如(TS,SA,GA),和如(SPA,AR,主编)等特殊工艺。所开发的交互式软件系统成为可能执行部分的三维建模,零件设计分析和仿真模型设计,注塑数值模拟成型及模具设计与所需的计算。该系统由四个基本模块:与模块部分的CAD建模与模块用于注塑成型数值模拟过程与模块的注塑参数的计算和模具设计计算和选择与模块建模模(型芯和型腔的设计和剩余的所有设计模具部件)2.1模块部分的CAD建模课程(I)对于该成分的CAD建模的模块是第一集成的CAD / CAE系统内的模块。这模块,用于生成所述塑料的CAD模型产品和合适的仿真模型。这个模块是塑料部件的所有必要的实体模型和几何精度指标。精度规格主要有:项目名称,数量,特性ID,功能名称,基点位置,模拟的码数退火,材料商品名称,材料牌号,零件公差,机器规格(姓名,锁模力,最大工件的压力,尺寸),以及数腔。如果指定的几何精度和规范(给定)与产品型号,同样被用作输入到下一个模块,而该模块仅用于生成的仿真模型。2.2模块用于注射的数值模拟成型工艺(模块二)模块二是用于注射的数值模拟成型工艺。用户实现一个迭代模拟过程测定注射成型性的参数成型和仿真模型规范。图4形式确定冷却通道和模腔之间的距离在一个产品模型导入后聚合物是从塑料材料数据库中选择,用户选择的选择对于门控子系统的最佳位置。该数据库包含塑料流变学,热学和力学性能材料。用户定义的注塑参数和挑选用于门控子系统的位置。进一步的分析方式进行:塑性流动,填充时间,注射压力,压降,流量前方温度,焊接线的存在,空气过滤器,冷却等。图5模具基地选择形式除了前面提到的参数注塑模块显示了以下模拟结果:焊接线的位置,空气疏水阀的分布,分布的注塑压力下,分享应力分布,表面上的温度分布仿真模型,填充一个模拟的质量模型的模拟模型从站立点的质量冷却的和时间的注塑22,23。一部分该模块的输出结果输入数据下一个模块。这些输出结果是:材料等级和材料供应商,弹性模量的流动方向,弹性横向方向上的弹性模量,注射压力,脱模温度,模具温度,熔融温度,最高熔化温度热塑性塑料,热塑性塑料的密度在液体和固态,最大喷射压力成型机。在迭代实现SA的过程,用户定义的模拟成型性模型和注塑成型的参数。所有结果是由不同颜色的区域代表的仿真模型。2.3模块的注射参数的计算成型及模具设计计算和选择(第三单元)基于仿真模型的尺寸和夹紧力的用户选择模具材料和系统计算芯和模腔的宽度和长度板。所述模腔的冷却之间的壁厚通道可以用下面的计算3标准:许用剪应力准则,允许弯曲应力准则,并允许角度等温线的标准示于 22,24。该系统采用比较壁厚的值中的最大值按标准计算前面提到的。基于所述仿真模型,用户的几何形状选择形状和模具类型。形式模具的选择形状,类型和子系统都显示在图5中一旦这些步骤完成后,用户实现了热,流变和力学计算的模具规格。一个例子的几种形式为机械模具之一计算示于图6图6机械计算模力学计算的算法段在图7中示出热,流变学和力学的计算后,用户从模具基座的模具板。形成一个标准的模具板的选择示于图8该系统计算梯板的厚度的值,固定,并可动模具板(图8)。基于计算出的尺寸,系统将自动采用第一大对于立管的厚度,可移动和固定的标准值模板。厚度和采用的计算标准值列于形式,如图8交互式系统建议所需的模具板。从数据库中加载模块的尺寸和产生的板的实体模型。板块选择之后,该板的尺寸被自动地,板材料是分配和3D模型和2D技术图纸是按需生成。模具组件(例如,从尺寸,固定板)中显示了形式为模具板模式代,如图9中图7 标准的模具板选择图8表格模板模型生成图9 数字模块四结构它们是系统加载从模具所需的板尺寸基地。通过这种方式,加载必要的任何其他标准的模具,即板组成的模具装配。模具组件由实例板的模型示于图10然后得到加载其他子系统的组成部分图5中示出子系统选择其他组件包括螺栓和垫圈。组件选择的方式由作者和由公司根据生产规则“D-M-E25,26。图10测试的CAD模型产品3案例研究在CAD的完整的理论框架/ CAE集成注塑模具设计系统的塑料制品是介绍了前面的章节中。为了完成这个审查,该系统是在一个真实的案例研究完全测试。系统进行了测试有类似塑料的一些例子部分。基于综合模型的一般结构在图1中所示的CAD / CAE设计系统,该作者测试系统上的一些具体的例子。一用于验证的测试模式的示例塑料零件示于图12。用于注射的数值模拟模块成型过程中定义的最佳位置设定门控子系统。深蓝色区域表示最佳用于设置门控子系统,如图13的位置基于尺寸,形状,个案研究的材料产物(图11),最优选通信子系统位置(图13),和注射成型参数(表1),则生成图11中所示的仿真模型。图11在部分最佳浇口位置的子系统图12仿真模型塑料件从完成固定和可移动的模具板后站立点CAD建模芯和型腔板,冷却通道,其次是手动选择其他的模具标准件,如浇口套,定位环,导向销,导套,导致引导衬套,垫片接骨板,螺钉(M410,100M10,M1030 M616,M1030等)建模和非标准模具配件(如果有)顶针,顶出孔,插入等。一个完整的模具组件的模型与测试仿真模型是在图15中所示。图13模具装配与测试,仿真模型的模型4结论本研究的目的是开发一个CAD / CAE模具设计集成系统,是基于Pro /E系统并使用特别设计和开发模块的模具设计。本文提出了一种软件对于相同的成型多腔模具解决方案件,即所谓的一个产品模具。系统专用正常型模具的产品,其设计长度和宽度都比产品大,该系统是定制的特殊要求模具的厂家。使得系统在建议完全控制的CAD / CAE功能参数使方便,快捷的模具修改。所描述的CAD / CAE模块是基于特征的,参数化的基础上,实体模型和面向对象的。对于数字模块模拟注塑允许的精选的注塑参数。该模块注射成型工艺参数的计算和模具设计计算和选择改进设计速度更快,减少了模具设计错误,并提供几何和精度,即必要的信息完整的模具设计。该系统的知识库可借助模具设计师通过互动模块,使他们的自己的智慧和经验,也被纳入进入总模具设计。制造部分证实了所开发的CAD / CAE系统提供正确的结果,并证明是一个自信的软件工具。未来的研究将针对三个主要目标。首先是开发家庭自动化系统模具设计。另一个研究路线是整合CAPP系统的注塑模具制造在科学系的开发技术。最后,在这方面下目前的趋势,一个协作系统使用Web技术和黑板结构设计和实施。12ORIGINAL ARTICLE A CAD/CAE-integrated injection mold design system for plastic products Ivan Matin parting surface design, impression design, runner system design, and mold-base design. The software uses a knowledge-based CAD system to provide an interactive environment, assist designers in the rapid completion of mold design, and promote the standardization of the mold design process. IKB-MOULD application consists of databases and knowledge bases for mold manufacturing. Lou et al. 12 developed an integrated knowledge-based system for mold- base design. The system has module for impression calcula- tion, dimension calculation, calculation of the number of mold platesandselectionofinjectionmachine.ThesystemusesPro/ Mold Base library. This paper describes KBS and key technol- ogies, such as product modeling, the frame-rule method, CBS, andthe neural networks.A multilayerneuralnetworkhasbeen trained by back propagation BP. This neural network adopts length, width, height and the number of parts in the mold as input and nine parameters (length, width, and height of up and downset-in,moldbasessidethickness,bottomthicknessofthe core,andcavityplates)asoutput.Moketal.13,14developed anintelligentcollaborativeKBSforinjectionmolds.Mokatel. 15 has developed an effective reuse and retrieval system that can register modeled standard parts using a simple graphical userinterfaceeventhoughdesignersmaynotknowtherulesof registration for a database. The mold design system was de- veloped using an Open API and commercial CAD/computer- aided manufacturing (CAM)/CAE solution. The system was applied to standardize mold bases and mold parts in Hyundai Heavy Industry. This system adopted the method of design editing, which implements the master model using features. The developed system provides methods whereby designers canregisterthemastermodel,whichisdefinedasafunctionof 3D CAD, as standard parts andeffectively reuse standard parts even though they do not recognize the rules of the database. Todic et al. 16 developed a software solution for auto- mated process planning for manufacturing of plastic injec- tion molds. This CAD/CAPP/CAM system does not provide CAE calculation of parameters of injection molding and mold design. Maican et al. 17 used CAE for mechanical, thermal, and rheological calculations. They analyzed phys- ical, mechanical, and thermal properties of plastic materials. They defined the critical parameters of loaded part. Nardin et al. 18 tried to develop the system which would suit all the needs of the injection molding for selection of the part moldtechnology system. The simulation results consist of geometrical and manufacturing data. On the basis of the simulation results, part designers can optimize part geome- try, while mold designers can optimize the running and the cooling system of the mold. The authors developed a pro- gram which helps the programmers of the injection molding machine to transfer simulation data directly to the machine. Zhou et al. 1 developed a virtual injection molding system based on numerical simulation. Ma et al. 19 developed standard component library for plastic injection mold design using an object-oriented approach. This is an object- oriented, library model for defining mechanical components parametrically. They developed an object-oriented mold component library model for incorporating different geo- metric topologies and non-geometric information. Over the years, many researchers have attempted to automate a whole Fig. 2 Structure of module for numerical simulation of injection molding process Int J Adv Manuf Technol (2012) 63:595607597 molddesignprocessusingvariousknowledge-basedengineer- ing (KBE) approaches, such as rule-based reasoning (RBR), and case base (CBR) and parametric design template (PDT). Chan at al. 20 developed a 3D CAD knowledge-based- assisted injection mold design system (IKB mold). In their research, design rules and expert knowledge of mold design were obtained from experienced mold designers and hand- books through various traditional knowledge acquisition pro- cesses. The traditional KBE approaches, such as RBR, CBR, andsimplePDThavebeensuccessfullyappliedtomoldcavity and runner layout design automation of the one product mold. Ye et al. 21 proposed a feature-based and object-oriented hierarchical representation and simplified symbolic geometry approach for automation mold assembly modeling. The previously mentioned analysis of various systems shows that authors used different ways to solve the problems of mold design by reducing it to mold configurator (selector). They used CAD/CAE integration for creating precision rules for mold-base selection. Many authors used CAE system for numerical simulation of injection molding to define parame- tersofinjectionmolding.SeveralalsodevelopedoriginalCAE modules for mold and injection molding process calculation. However, common to all previously mentioned systems is the lack of module for calculation of mold and injection molding parameters which would allow integration with the results of numerical simulation. This leads to conclusion that there is a need to create a software system which integrates parameters of injection molding with the result obtained by numerical Fig. 3 Forms to define the mold geometry Fig. 4 Forms to determine the distance between the cooling channels and mold cavity 598Int J Adv Manuf Technol (2012) 63:595607 simulation of injection molding, mold calculation, and selec- tion. All this would be integrated into CAD/CAE-integrated injection mold design system for plastic products. 2 Structure of integrated CAD/CAE system As is well known, various computational approaches for supporting mold design systems of various authors use design automation techniques such as KBE (RBR, CBR, PDT) or design optimisation techniques such as traditional (NLP,LP, BB, GBA, IR, HR) or metaheuristic search such as (TS, SA, GA) and other special techniques such as (SPA, AR, ED). The developed interactive software system makes possible to perform: 3D modeling of the parts, analysis of part design and simulation model design, numerical simulation of injec- tion molding, and mold design with required calculations. The system consists of four basic modules: module IV) This module is used for CAD modeling of the mold (core and cavity design). This module uses additional software tools for automation creating core and cavity from simula- tion (reference) model including shrinkage factor of plastics material and automation splitting mold volumes of the fixed and movable plates. The structure of this module is shown in Fig. 11. Additional capability of this module consists of software tools for: &Applying a shrinkage that corresponds to design plastic part, geometry, and molding conditions, which are com- puted in module for numerical simulation &Make conceptual CAD model for nonstandard plates and mold components &Design impression, inserts, sand cores, sliders and other components that define a shape of molded part &Populate a mold assembly with standard components such as new developed mold base which consists of D- M-E mold base and mold base of enterprises which use this system, and CAD modeling ejector pins, screws, and other components creating corresponding clearance holes &Create runners and waterlines, which dimensions was calculated in module for calculating of parameters of injection molding and mold design calculation and selection &Check interference of components during mold opening, and check the draft surfaces After applied dimensions and selection mold compo- nents, user loads 3D model of the fixed (core) and movable (cavity) plate. Geometry mold specifications, calculated in the previous module, are automatically integrated into this module, allowing it to generate the final mold assembly. Output from this module receives the complete mold model of the assembly as shown in Fig. 15. This module allowsFig. 11 Subassembly model of mold Int J Adv Manuf Technol (2012) 63:595607603 modeling of nonstandard and standard mold components that are not contained in the mold base. 3 Case study The complete theoretical framework of the CAD/CAE-inte- grated injection mold design system for plastic products was presented in the previous sections. In order to complete this review, the system was entirely tested on a real case study. The system was tested on few examples of similar plastic parts. Based on the general structure of the model of inte- grated CAD/CAE design system shown in Fig. 1, the authors tested the system on some concrete examples. One of the examples used for verification of the test model of the plastic part is shown in Fig. 12. The module for the numerical simulation of injection molding process defines the optimal location for setting gating subsystem. Dark blue regions indicate the optimal position for setting gating subsystem as shown in Fig. 13. Based on dimensions, shape, material of the case study product (Fig. 11), optimal gating subsystem location (Fig. 13), and injection molding parameters (Table 1), the simulation model shown in Fig. 14 was generated. One of the rules for defining simulation model gate for numerical simulation: IF (tunnel, plastic material, mass) THEN prediction dimension (upper tunnel, length, diameter1, diameter2, radius, angle, etc.) Part of the output results from module II, which are used in module III are shown in Table 1. Fig. 12 CAD model of the test product Fig. 13 Optimal gating subsystem location in the part 604Int J Adv Manuf Technol (2012) 63:595607 In module III, the system calculates clamping force F0 27.9 kN (Fig. 3), cooling channel diameter dKT06 mm, cooling channel length lKT090 mm (Fig. 4). Given the shape and dimensions of the simulation model, square shape of mold with normal performance was selected as shown in Fig. 5. Selected mold assembly standard series: 1,616, length and width of mold housing 156156 mm as shown in Fig. 8. In the segment of calculation shown in Fig. 8, mold design system panel recommends the following mold plates: &Top clamping plate N03-1616-20 &Bottom clamping plate N04-1616-20 &Fixed mold plate (core plate) N10A-1616-36 &Movable plate (cavity plate) N10B-1616-36 &Support plate N20-1616-26 &Risers N30-1616-46 &Ejector retainer plate N40-1616-10 &Ejector plate N50-1616-12 After finishing the fixed and movable mold plates from the standpoint of CAD modeling core and cavity plates, cooling channel, followed by manual selection of other mold standard components such as sprue bush, locating ring, guide pins, guide bush, leading bushing guide, spacer plates, screws (M410, M10100, M1030, M616, M1030, etc.) and modeling nonstandard mold components (if any) ejector pins, ejector holes, inserts etc. A complete model of the mold assembly with tested simulation model is shown in Fig. 15. Table 1 Part of the output results from the module for the numerical simulation of injec- tion molding process Material grade and material supplierAcrylonitrile butadiene styrene 780 (ABS 780), Kumho Chemicals Inc. Max injection pressure100 MPa Mold temperature60C ili 40 Melt Temperature230C Injection Time0,39 s 0,2 s Injection Pressure27,93 MPa Recommended ejection temperature79C Modulus of elasticity, flow direction for ABS 7802,600 MPa Modulus of elasticity, transverse direction for ABS 7802,600 MPa Poision ratio in all directions for ABS 7800.38 Shear modulus for ABS 780942 MPa Density in liquid state0.94032 g/cm3 Density in solid state1.047 g/cm3 Fig. 14 Simulation model of plastic part Int J Adv Manuf Technol (2012) 63:595607605 4 Conclusion The objective of this research was to develop a CAD/CAE integrated system for mold design which is based on Pro/ ENGINEER system and uses specially designed and devel- oped modules for mold design. This paper presents a soft- ware solution for multiple cavity mold of identical molding parts, the so-called one product mold. The system is dedi- cated to design of normal types of molds for products whose length and width are substantially greater than product height, i.e., the system is customized for special require- ments of mold manufacturers. The proposed system allows full control over CAD/CAE feature parameters which ena- bles convenient and rapid mold modification. The described CAD/CAE modules are feature-based, parametric, based on solid models, and object oriented. The module for numerical simulation of injection molding allows the determination selection of injection molding parameters. The module for calculation of parameters of injection molding process and mold design calculation and selection improves design Fig. 15 Model of the mold assembly with tested simulation model 606Int J Adv Manuf Technol (2012) 63:595607 faster, reduces mold design errors, and provides geometric and precision information necessary for complete mold de- sign. The knowledge base of the system can be accessed by mold designers through interactive modules so that their own intelligence and experience can also be incorporated into the total mold design. Manufacture of the part confirms that the developed CAD/CAE system provides correct results and proves to be a confident software tool. Future research will be directed towards three main goals. The first is to develop a system for automation of family mold design. Another line of research is the integration with CAPP system for plastic injection molds manufacturing developed at the Faculty of Technical Sciences. Finally, following current trends in this area, a collaborative system using web technologies and blackboard architecture shall be designed and implemented. References 1. Zhou H, Shi S, Ma B (2009) A virtual injection molding system based on numerical simulation. Int J Manuf Technol 40:297306 2. Jong WR, Wu CH, Liu HH, Li MY (2009) A collaborative navi- gation system for concurente mold design. Int J Adv Manuf Technol 40(34):215225 3. Low MLH, Lee KS (2003) Application of standardization for initial design of plastic injection moulds. Int J Prod Res 41:2301 2324 4. Lin BT, Chang MR, Huang HL, Liu CHY (2008) Computer- aided structural design of drawing dies for stamping processes based on functional features. Int J Adv Manuf Technol 42:11401152 5. Lin BT, Chan CHK, Wang JCH (2008) A knowledge-based para- metric design system for drawing dies. Int J Adv Manuf Technol 36:671680 6. Deng YM, Britton GA, Lam YC, Ma YS (2001) A feature-based CAD-CAE integration model for injection molded product design. Proceedings of the 16th International Conference on Production Research, 2001, Prague, 234241 7. Deng YM, Britton GA, Lam YC, Ma YS (2002) Feature-based CAD/CAE integration model for injection-moulded product design. Int J Prod Res 15:37373750 8. Godec D, Catic I, Sercer M (2003) Conceptual mould design for injection moulding of thermoplastics. Chem Eng Mater Sci 24(2 4):95102 9. Godec D, Sercer M, Osrecki (2009) Design of mould for injectio
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:小型抽水泵入水三通塑料件注射模具设计【优秀含CAD图+说明书+文献翻译】
链接地址:https://www.renrendoc.com/p-18316658.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!