排列组合问题答题策略.doc_第1页
排列组合问题答题策略.doc_第2页
排列组合问题答题策略.doc_第3页
排列组合问题答题策略.doc_第4页
排列组合问题答题策略.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

CAE软件|CAE培训|有限元分析| 广州工程仿真科技有限公司排列组合问题答题策略排列组合问题的若干解题策略一,相邻问题-整体捆绑法例1,7名学生站成一排,甲已必须站在一起,有多少种方法?二,不相临问题选空插入法练习:学校组织老师学生一起看电影,同一排电影票12张。8个学生,4个老师,要求老师在学生中间,且老师互不相邻,共有多少种不同方法?三;特殊元素优先考虑法例3;1名老师和4名获奖学生排成一排照相留念,若老师不排在两端,则共有多少种不同的排法?练习;乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在一、三、五位置,其余7名队员选2名安排在二、四位置,那么不同的出场安排共有多少种?对于含有限定条件的排列组合问题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。四;排除法例4;6个人站成一排,若甲不站在排头也不站在排尾,有多少种不同排法?练习;6个人站成一排,若甲不站在排头,已不在排尾,有多少种不同排法?排列的问题有时比较复杂,特别是分类时,所以有时可以从所有的排列中,把不符合的排列剔除,这样的解题方法叫排除法。典型例题例一;用0、1、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数有多少个?典型例题例二;A、B、C、D、E五人并排站成一排,如A、B必相邻,且B在A右边,那么不同的排法有多少种?典型例题练1;5人成一排,要求甲、已相邻,有几种排法?练2;5名学生和3名老师站成一排照相,3名老师必须站在一起的不同排法共有多少种?练3;计划展出不同的画10幅,其中一幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不能放在两端,那么不同的陈列方式有多少种?典型例题练习4;7人站成一行,如果甲、已两人不相邻,则不同的排法种数是多少?练习5;要排一个有6个歌唱节目和4个舞蹈节目的演出清单,任何两个舞蹈不相邻,有多少种不同排法?练习6;由数字0、1、2、3、4、5组成没有重复数字的六位数,其中个位数字小于十位数字的共有多少个?三;复杂问题-总体排除法或排异法例3;正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个?练习;班里有43个同学从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?有些问题直接法考虑比较难比较复杂,或分类不清或多种时,而他的反面往往比较简洁,可考虑用排除法,先求出他的反面,在从整体中排除。排列组合是公务员行测常考的题型,也是很多考生头疼的内容。只要掌握一定的解题方法,拿到排列组合的分数并不是难题,下面文章为大家介绍公务员行测排列组合问题的解题方法。1.间接法即部分符合条件排除法,采用正难则反,等价转换的策略。为求完成某件事的方法种数,如果我们分步考虑时,会出现某一步的方法种数不确定或计数有重复,就要考虑用分类法,分类法是解决复杂问题的有效手段,而当正面分类情况种数较多时,则就考虑用间接法计数.这是行测排列组合问题的解题方法之一。2.插板法插板法也是行测排列组合问题的解题方法,指在解决若干相同元素分组,要求每组至少一个元素时,采用将比所需分组数目少1的板插入元素之间形成分组的解题策略。注意:其首要特点是元素相同,其次是每组至少含有一个元素,一般用于组合问题中。3.特殊优先法特殊元素,优先处理;特殊位置,优先考虑。对于有附加条件的排列组合问题,这个也是行测排列组合问题的解题方法,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。4.捆绑法所谓捆绑法,指在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个整体参与排序,然后再单独考虑这个整体内部各元素间顺序。注意:其首要特点是相邻,其次捆绑法一般都应用在不同物体的排序问题中。5.选“一”法,类似除法对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一同进行排列,然后用总的排列数除以这几个元素的全排列数。 这里的“选一”是说:和所求“相似”的排列方法有很多,我们只取其中的一种。以上内容是对行测排列组合问题的解题方法的介绍,希望能够给考生们提供帮助。考生们在平时练习的时候应该注重方法的总结,学会融会贯通。首先,怎样分析排列组合综合题?1)使用“分类计数原理”还是“分步计数原理”要根据我们完成某事件时采取的方式而定,分类来完成这件事时用“分类计数原理”,分步来完成这件事时就用“分步计数原理”,怎样确定分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步骤”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。2)排列与组合定义相近,它们的区别是在于是否与顺序有关。3)复杂的排列问题常常通过试验、画简图、小数字化等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,亦常常需要用不同的方法求解来获得检验。4)按元素的性质进行分类,按事件发生的连续性进行分步是处理组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。5)处理排列、组合综合性问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题基本方法和原理,通过解题训要注意积累分类和分步的基本技能。6)在解决排列、组合综合性问题时,必须深刻理解排列组合的概念,能熟练确定问题是排列问题还是组合问题,牢记排列数与组合数公式与组合数性质,容易产生的错误是重复和遗漏计数。“16字方针”是解决排列组合问题的基本规律,即:分类相加,分步相乘,有序排列,无序组合。“12个技巧”是迅速解决排列组合的捷径,具体方法与运用如下:一 特殊元素的“优先排列法”:对于特殊元素的排列组合问题,一般先考虑特殊元素,再考其他的元素。 二总体淘汰法:对于含否定的问题,还可以从总体中把不合要求的除去。三合理分类与准确分步:含有约束条件的排列组合问题,按元素的性质进行分类,按事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。四相邻问题用捆绑法:对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。五不相邻问题用“插空法”:对某几个元素不相邻的排列问题,可将其他元素排列好,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。六顺序固定用“除法”:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。七分排问题用直接法:把几个元素排成若干排的问题,可采用统一排成一排的排方法来处理。八试验:题中附加条件增多,直接解决困难时,用试验逐步寻找规律。例.将数字1,2,3,4填入标号为1,2,3,4,的方格中,每方格填1个,方格标号与所填数字均不相同的填法种数有( )A,6 B.9 C.11 D.23解:第一方格内可填2或3或4,如第一填2,则第二方格可填1或3或4,若第二方格内填1,则后两方格只有一种方法;若第二方格填3或4,后两方格也只有一种填法。一共有9种填法,故选B九探索:对于情况复杂,不易发现其规律的问题需要认真分析,探索出其规律;例.从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则不同的取法种数有多少种。解:两个数相加中以较小的数为被加数,1+100100,1为被加数时有1种,2为被加数有2种,49为被加数的有49种,50为被加数的有50种,但51为被加数有49种,52为被加数有48种,99为被捕加数的只有1种,故不同的取法有(1+2+3+50)+(49+48+1)=2500种十消序例。4个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法。解:先在7个位置中任取4个给男生,有种排法,余下的3个位置给女生,只有一种排法,故有种排法。十一.住店法:解决“允许重复排列问题”要区分两类元素,一类元素可以重复,另一类不能重复,把不能重复的元素看作店,再利用分步计数原理直接求解称“住店法”;例.7名学生争五项冠军,获得冠军的可能种数有( )A. 种 B. 种 C. 种 D. 种解.七名学生看作七家“店”,五项冠军看作5名“客”,每个客有7种住法,由分步计数原理可得种,故选A十二.对应例.在100名选手之间进行单循环淘汰赛(即一场失败要退出比赛)最后产生一名冠军,要比几场?解.要产生一名冠军,要淘汰冠军以外的所有选手,即要淘汰99名选手,要淘汰一名就要进行一场,故赛99场。以上十二种方法是解决一般排列组合问题常用方法,数学是一门非常灵活的课程,解题法仅仅限于这“12个技巧”,此外,常用的还有“隔板法”,“倍缩法”。排列组合问题中的数学思想方法也是用得多的(教师点评:这句可改为“排列组合问题中蕴藏着数学思想方法”)一分类讨论的思想:许多“数数”问题往往情境复杂,层次多,视角广,这就需要我们在分析问题时,选择恰当的切入点,从不同的侧面,把原问题变成几个小问题,分而治之,各种击破。例.已知集合A和集合B各含有12个元素,含有4个元素,求同时满足下列条件的集合C的个数:1)且C中含有3个元素,2)84 8解:如图,因为A,B各含有12个元素,含有4个元素,所以中的元素有12+12-4=20个,其中属于A的有12个,属于A而不属于B的有8个,要使,则C中的元素至少含在A中,集合C的个数是:1)只含A中1个元素的有;2)含A中2个元素的有;3)含A中3个元素的有,故不求的集合C的个数共有+=1084个二等价转化的思想:很多“数数”问题的解决,如果能跳出题没有限定的“圈子”,根据题目的特征构思设计出一个等价转化的途径,可使问题的解决呈现出“要柳暗花明”的格局。1.具体与抽象的转化例.某人射击7枪,击中5枪,问击中和末击中的不同顺序情况有多少种?分析:没击中用“1”表示,击中的用“0”表示,可将问题转化不下列问题:数列有两项为0,5项是1,不同的数列个数有多少个?解:1)两个0不相邻的情况有种,2)两个0相邻的情况有种,所以击中和末击中的不同顺序情况有+=21种。2)不同的数学概念之间的转化例.连结正方体8个顶点的直线中,为异面直线有多少对?分析:正面求解或反面求解(利用补集,虽可行,但容易遗漏或重复,注意这样一个事实,每一个三棱锥对应着三对异面直线,因而转化为计算以正方体顶点,可以构成多少个三棱锥)解:从正文体珠8个顶点中任取4个,有种,其中4点共面的有12种,(6个表面和6个对角面)将不共面的4点可构一个三棱锥,共有-12个三棱锥,因而共有3(-12)=174对异面直线。综上所述,有以上几种解排列组合的方法,此外,当然也还有其他的方法要靠我们去发现和积累,我们要掌握好这些方法,并且能够灵活运用,这样,在日常生活中,我们们能轻易解决很多问题。教师点评:对排列组合问题的处理方法总结得很细、很全面,而且挖掘出其中所蕴藏的数学思想方法,对学习排列组合有一定的指导性。1、文氏图: 在文氏图中,以下图形的含义如下: 矩形:其内部的点表示全集的所有元素; 矩形内的圆(或其它闭曲线):表示不同的集合; 圆(或闭曲线)内部的点:表示相应集合的元素。2、三交集公式:A+B+C=ABC+AB+BC+AC-ABC (ABC指的是E,ABC指的是D) 二、应用举例 例:2005年真题对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢所戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有: A22人B28人C30人D36人 【解析】首先,根据题意画出文氏图如下:A(球迷)58 B(戏迷)38 C(影迷)52 E(员工总数)100。 A+B+C=58+38+52148 ABC100 AB18 BC16 ABC12 然后,根据三交集公式A+B+C=ABC+AB+BC+AC-ABC 推出:ACA+B+CABCABBC+ ABC 148-100-18-16+12 26 最后得出:只喜欢看电影的人C- AC-(BC- ABC)52-26-(16-12)52-26-422 选择A正确。例1书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书。 (1)若从这些书中任取一本,有多少种不同的取法? (2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法? (3)若从这些书中取不同的科目的书两本,有多少种不同的取法。 解:(1)由于从书架上任取一本书,就可以完成这件事,故应分类,由于有3种书,则分为3类然后依据加法原理,得到的取法种数是:3+5+6=14种。 (2)由于从书架上任取数学书、语文书、英语书各1本,需要分成3个步骤完成,据乘法原理,得到不同的取法种数是:356=90(种)。 (3)由于从书架上任取不同科目的书两本,可以有3类情况(数语各1本,数英各1本,语英各1本)而在每一类情况中又需分2个步骤才能完成。故应依据加法与乘法两个原理计算出共得到的不同的取法种数是: 35+36+56=63(种)。 例2已知两个集合A=1,2,3,B=a,b,c,d,e,从A到B建立映射,问可建立多少个不同的映射? 分析:首先应明确本题中的“这件事是指映射,何谓映射?即对A中的每一个元素,在B中都有唯一的元素与之对应。” 因A中有3个元素,则必须将这3个元素都在B中找到家,这件事才完成。因此,应分3个步骤,当这三个步骤全进行完,一个映射就被建立了,据乘法原理,共可建立不同的映射数目为:555=53(种)。 2排列数与组合数的两个公式 排列数与组合数公式各有两种形式,一是连乘积的形式,这种形式主要用于计算;二是阶乘的形式,这种形式主要用于化简与证明。 连乘积的形式 阶乘形式 等式成立。 评述:这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质:n!(n+1)=(n+1)!可使变形过程得以简化。 例4解方程 解:原方程可化为: 解得x=3。 评述:解由排列数与组合数形式给出的方程时,在脱掉排列数与组合数的符号时,要注意把排列数与组合数定义中的取出元素与被取元素之间的关系以及它们都属自然数的这重要限定写在脱掉符号之前。 3排列与组合的应用题 历届高考数学试题中,排列与组合部分的试题主要是应用问题。一般都附有某些限制条件;或是限定元素的选择,或是限定元素的位置,这些应用问题的内容和情景是多种多样的,而解决它们的方法还是有规律可循的。常用的方法有:一般方法和特殊方法两种。 一般方法有:直接法和间接法。 (1)在直接法中又分为两类,若问题可分为互斥各类,据加法原理,可用分类法;若问题考虑先后次序,据乘法原理,可用占位法。 (2)间接法一般用于当问题的反面简单明了,据的原理,采用排除的方法来获得问题的解决。 特殊方法: (1)特元特位:优先考虑有特殊要求的元素或位置后,再去考虑其它元素或位置。 (2)捆绑法:某些元素必须在一起的排列,用“捆绑法”,紧密结合粘成小组,组内外分别排列。 (3)插空法:某些元素必须不在一起的分离排列用“插空法”,不需分离的站好实位,在空位上进行排列。 (4)其它方法。 例57人排成一行,分别求出符合下列要求的不同排法的种数。 (1)甲排中间; (2)甲不排两端;(3)甲,乙相邻; (4)甲在乙的左边(不要求相邻); (5)甲,乙,丙连排; (6)甲,乙,丙两两不相邻。 解:(1)甲排中间属“特元特位”,优先安置,只有一种站法,其余6人任意排列,故共有:1=720种不同排法。 (2)甲不排两端,亦属于“特元特位”问题,优先安置甲在中间五个位置上任何一个位置则有种,其余6人可任意排列有种,故共有=3600种不同排法。 (3)甲、乙相邻,属于“捆绑法”,将甲、乙合为一个“元素”,连同其余5人共6个元素任意排列,再由甲、乙组内排列,故共有=1400种不同的排法。 (4)甲在乙的左边。考虑在7人排成一行形成的所有排列中:“甲在乙左边”与“甲在乙右边”的排法是一一对应的,在不要求相邻时,各占所有排列的一半,故甲在乙的左边的不同排法共有=2520种。 (5)甲、乙、丙连排,亦属于某些元素必须在一起的排列,利用“捆绑法”,先将甲、乙、丙合为一个“元素”,连同其余4人共5个“元素”任意排列,现由甲、乙、丙交换位置,故共有=720种不同排法。 (6)甲、乙、丙两两不相邻,属于某些元素必须不在一起的分离排列,用“插空法”,先将甲、乙、丙外的4人排成一行,形成左、右及每两人之间的五个“空”。再将甲、乙、丙插入其中的三个“空”,故共有 =1440种不同的排法。 例6用0,1,2,3,4,5这六个数字组成无重复数字的五位数,分别求出下列各类数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论