摘要
电力系统最重要的任务是提供高质量和高可靠性的电力。电力传输必须依靠高压输电线路,它的安全稳定运行直接影响电力系统的可靠性。检线机器人的本体设计是整机设计中一个相当重要的部分,需经过多次反复才能完成;在进行机器人结构分析和设计时,需要建立一定的实验环境(导线物理模型、障碍物等),对样机进行多次实验以检验其是否能达到预期的目标,这就导致其设计的周期长、设计效率低以及改型工作量大等缺点。
关键词:检线机器人;本体设计;结构
Automatic inspection line agencies function structure design
Abstract
The power system is the most important task is to provide high-quality and high-reliability power. Power transmission must rely on high-voltage transmission lines, it's safe and stable operation directly affect the reliability of the power system. Subject line robot body design is a very important part of the whole design, and subject repeatedly to complete; making robot structural analysis and design, the need to establish the experimental environment (wire physical model, obstructions, etc.) conducted several experiments to test whether it can achieve the desired objectives, which led to its design cycle is long, low design efficiency and retrofit heavy workload and other shortcomings of the prototype.
Keywords: inspection line;robot body;design structure
目 录
1 绪论 1
1.1 研究背景及意义 1
1.2 架空线路巡线机器人与机器人仿真文献综述 3
1.2.1 架空线路巡线机器人研究概况 3
1.2.2 机器人仿真简介 3
1.2.3 中国与国外先进技术的差距 5
1.3 本文主要内容 5
2 检线机器人本体结构的设计 7
2.1 方案要求 7
2.2 总体结构 9
2.3 柔性臂 9
2.4 驱动装置 12
2.4.1 轮式移动机构 13
2.4.2 步进式蠕动爬行机构 13
2.5 刹车制动装置 13
3 各零部件的选择与设计 14
3.1 丝杆的设计 14
3.11 丝杆的结构设计 14
3.12 丝杆的设计计算 15
3.13 丝杆的强度校核 17
3.2 齿轮的设计 19
3.21 齿轮的结构设计 19
3.22 齿轮的参数计算 22
3.3 齿轮箱体的结构设计 23
3.4 内升降筒的设计计算 24
3.5 外升降筒的设计 25
3.5.1 外升降筒的设计计算 25
3.5.2 外升降筒的强度校核 25
3.6 涡轮蜗杆的设计 27
3.7 电机的选择 28
4 结论 31
参考文献 32
致 谢 34
毕业设计(论文)知识产权声明 35
毕业设计(论文)独创性声明 36
1 绪论
1.1研究背景及意义
电力系统最重要的任务是提供高质量和高可靠性的电力。电力传输必须依靠高压输电线路,它的安全稳定运行直接影响电力系统的可靠性。由于输电线路分布点多、面广,绝大部分远离城镇,所处地形复杂,自然环境恶劣,且电力线及杆塔附件长期暴露在野外,会受到持续的机械张力、电气闪络、材料老化的影响而产生断股、磨损、腐蚀等损伤,如不及时修复更换,原来微小的破损和缺陷就可能扩大,最终导致严重事故,造成大面积停电,从而造成极大的经济损失和严重的社会影响。所以,必须对输电线路进行定期巡视检查,随时掌握和了解输电线路的运行情况以及线路周围环境和线路保护区的变化情况,以便及时发现和消除隐患,预防事故的发生,确保供电安全。目前,对输电线路的巡检主要采用两种方法,即地面人工目测法和直升飞机航测法。前者的巡检精度低,劳动强度大,且存在巡检盲区。部分地区大雪封山时,车辆和行人无法进入;在深山还有野兽出没,这给巡视人员带来了很大的安全隐患;后者则存在飞行安全隐患且巡线费用昂贵。如果用直升机巡视替代地面巡视,则每100公里1年巡视费用同塔双回线需217.92万元(单回线136万元)。如果用直升机在整个东北电网覆盖地区巡视则需超过5000万元。费用过于昂贵,直接限制了直升机巡视的广泛推广。
图1.1巡线机器人外观图
由于巡线机器人可以克服上述缺陷,因此,巡线机器人已成为特种机器领域的一个研究热点。巡线机器人不仅可以减轻工人巡线的劳动强度,降低高压输电的运行维护成本,还可以提高巡检作业的质量和科学管理技术水平,对于增强电力生产自动化综合能力,创造更高的经济效益和社会效益都具有重要意义。
巡线机器人悬挂于架空避雷线上,并以此为行驶作业路径,通过自动控制方式完成输电线路巡检作业,及对线路的机械电气故障,包括绝缘子劣化和污秽、导线的机械破损、连接金具机械松脱等故障进行检测。其特殊的作业环境要求机器人能够沿输电导线全程运行,包括沿输电导线的直线段和耐张线段实现滚动爬行,跨越及避让悬垂线夹、悬垂绝缘子、防振锤、耐张线夹等结构型障碍物。
因此,机器人的本体设计是整机设计中一个相当重要的部分,需经过多次反复才能完成;在进行机器人结构分析和设计时,需要建立一定的实验环境(导线物理模型、障碍物等),对样机进行多次实验以检验其是否能达到预期的目标,这就导致其设计的周期长、设计效率低以及改型工作量大等缺点。此外,样机的单机制造增加了成本。在竞争的市场条件下,基于物理样机的设计验证过程严重地制约了产品质量的提高、成本的降低及市场推广应用。巡线机器人须要自主跨越障碍,根据障碍的空间分布,机器人手臂要求有伸缩和回转两个自由度。巡线机器人为了保持平衡以及互相配合,需要左右各一个挂臂,当机器人需要升降时,当一个挂臂负责升降,负载拖动主箱体,攀附于电缆上,另一个挂臂空载,升降到同一高度,准备交替动作,交替的同时通过平移蜗箱,移动主箱体,两手臂互相配合,跨越障碍。选择用一个电机来作为动力系统,考虑到手臂的升降行程的要求(即升降行程不小于480mm),以及挂臂升降的稳定性,本设计采用螺纹传动,用一对丝杠螺母副传动。由于要采用二节伸缩的升降形式,须要内升降筒与外升降筒同时运动,才可以有二节展开的效果,同时考虑到传动的稳定性,设计采用一对齿轮啮合带动内外升降筒同时运动,从而实现两节展开。负载的挂臂由电动机1带动内丝杠旋转,内丝杆与固定在内升降筒上的下螺母啮合,带动内升降筒的升降,又由减速箱中联轴器上的齿轮1啮合固定在外丝杠上的齿轮2,从而带动外丝杠旋转,考虑到二节伸缩,旋转方向应与内丝杠相反,又通过固定在涡轮箱体上的上螺母,带动外升降筒向上运动,使机器人挂臂两节展开。并在丝杆端部设置挡板,限制升降筒的行程。这是手臂伸缩,也就是实现挂臂垂直方向的自由度。考虑到手臂可进行回转的要求,为了满足结构紧凑的要求,本设计采用涡轮蜗杆啮合的方式,动力系统采用一个电机,由电动机2来带动蜗杆的旋转,蜗杆与涡轮啮合,固定在涡轮上的上螺母同时与外丝杠啮合,从而带到整个手臂回转,这样既能够保证外升降筒垂直升降的要求,又可以实现机器人挂臂旋转的功能,同时,还大大提高了空间的运用,这就是xy平面旋转的自由度。由于本课题对挂臂旋转速度未做要求,因此电机的选择不作为设计的重点。
1.2架空线路巡线机器人与机器人仿真文献综述
1.2.1架空线路巡线机器人研究概况
国外巡线机器人的研究始于20世纪80年代末,日本、加拿大、美国等发达国家先后开展了巡线机器人的研究工作。1988年,东京电力公司的Swada等人研制了光纤复合架空地线(OPGW)巡线移动机器人,如图1.2所示。该机器人利用一对驱动轮和一对夹持轮沿地线爬行,能跨越地线上防振锤、螺旋减震器等障碍物。遇到杆塔时,机器人采用仿人攀援机理,先展开携带的弧形手臂,手臂两端勾住线塔两侧的地线,构成一个导轨,然后本体顺着导轨滑到线塔的另一侧;待机器人夹持轮抱紧线塔另一侧的地线后,将弧形手臂折叠收起,以备下次使用。机器人运动控制有粗略和精确定位两种模式,粗略控制是把线塔和地线的资料数据(线塔的高度、位置、电线长度、线路上附件数量等)预先编制好程序输入机器人,据此控制机器人的行走和越障;精确定位控制则根据传感器反馈信息进行控制。机器人携带的损伤探测单元采用涡流分析方法探测光纤复合架空地线的损伤情况,并把探测数据记录到磁带上。但因其质量过大,达到100kg,而不能推广应用。












