




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷马鞍山市二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 命题“aR,函数y=”是增函数的否定是( )A“aR,函数y=”是减函数B“aR,函数y=”不是增函数C“aR,函数y=”不是增函数D“aR,函数y=”是减函数2 点A是椭圆上一点,F1、F2分别是椭圆的左、右焦点,I是AF1F2的内心若,则该椭圆的离心率为( )ABCD3 已知点F是抛物线y2=4x的焦点,点P在该抛物线上,且点P的横坐标是2,则|PF|=( )A2B3C4D54 “”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性.5 有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为( )A15,10,25B20,15,15C10,10,30D10,20,206 下列说法正确的是( )A类比推理是由特殊到一般的推理B演绎推理是特殊到一般的推理C归纳推理是个别到一般的推理D合情推理可以作为证明的步骤7 在抛物线y2=2px(p0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为( )Ax=1Bx=Cx=1Dx=8 设集合A=x|2x4,集合B=x|y=lg(x1),则AB等于( )A(1,2)B1,2C1,2)D(1,29 用反证法证明命题“a,bN,如果ab可被5整除,那么a,b至少有1个能被5整除”则假设的内容是( )Aa,b都能被5整除Ba,b都不能被5整除Ca,b不能被5整除Da,b有1个不能被5整除10已知奇函数是上的增函数,且,则的取值范围是( )A、 B、 C、 D、11双曲线:的渐近线方程和离心率分别是( )ABCD12执行如图所示的程序框图,如果输入的t10,则输出的i( )A4 B5C6 D7二、填空题13如图所示是y=f(x)的导函数的图象,有下列四个命题:f(x)在(3,1)上是增函数;x=1是f(x)的极小值点;f(x)在(2,4)上是减函数,在(1,2)上是增函数;x=2是f(x)的极小值点其中真命题为(填写所有真命题的序号)14如果实数满足等式,那么的最大值是 15等比数列an的前n项和Snk1k22n(k1,k2为常数),且a2,a3,a42成等差数列,则an_16“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负现在甲乙丙三人一起玩“黑白配”游戏设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是17在中,已知,则此三角形的最大内角的度数等于_.18Sn=+=三、解答题19如图所示,已知+=1(a0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合()求椭圆C的方程;()求ABD面积的最大值;()设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数,使得k1+k2=0成立?若存在,求出的值;否则说明理由 20已知函数f(x)=2sin(x+)(0,)的部分图象如图所示;(1)求,;(2)将y=f(x)的图象向左平移(0)个单位长度,得到y=g(x)的图象,若y=g(x)图象的一个对称点为(,0),求的最小值(3)对任意的x,时,方程f(x)=m有两个不等根,求m的取值范围 21巳知二次函数f(x)=ax2+bx+c和g(x)=ax2+bx+clnx(abc0)()证明:当a0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;()在同一函数图象上取任意两个不同的点A(x1,y1),B(x2,y2),线段AB的中点C(x0,y0),记直线AB的斜率为k若f(x)满足k=f(x0),则称其为“K函数”判断函数f(x)=ax2+bx+c与g(x)=ax2+bx+clnx是否为“K函数”?并证明你的结论 22如图所示,已知在四边形ABCD中,ADCD,AD=5,AB=7,BD=8,BCD=135(1)求BDA的大小(2)求BC的长23设函数()求函数的最小正周期;()求函数在上的最大值与最小值24某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x年后游艇的盈利为y万元(1)写出y与x之间的函数关系式;(2)此游艇使用多少年,可使年平均盈利额最大?马鞍山市二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:因为全称命题的否定是特称命题,所以,命题“aR,函数y=”是增函数的否定是:“aR,函数y=”不是增函数故选:C【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题2 【答案】B【解析】解:设AF1F2的内切圆半径为r,则SIAF1=|AF1|r,SIAF2=|AF2|r,SIF1F2=|F1F2|r,|AF1|r=2|F1F2|r|AF2|r,整理,得|AF1|+|AF2|=2|F1F2|a=2,椭圆的离心率e=故选:B3 【答案】B【解析】解:抛物线y2=4x的准线方程为:x=1,P到焦点F的距离等于P到准线的距离,P的横坐标是2,|PF|=2+1=3故选:B【点评】本题考查抛物线的性质,利用抛物线定义是解题的关键,属于基础题4 【答案】A【解析】因为在上单调递增,且,所以,即.反之,当时,(),不能保证,所以“”是“”的充分不必要条件,故选A.5 【答案】B【解析】解:每个个体被抽到的概率等于=,则高一、高二、高三年级抽取的人数分别为 800=20,600=15,600=15,故选B【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题6 【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题7 【答案】C【解析】解:由题意可得抛物线y2=2px(p0)开口向右,焦点坐标(,0),准线方程x=,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即4()=5,解之可得p=2故抛物线的准线方程为x=1故选:C【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题8 【答案】D【解析】解:A=x|2x4=x|x2,由x10得x1B=x|y=lg(x1)=x|x1AB=x|1x2故选D9 【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证命题“a,bN,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”故应选B【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧10【答案】A【解析】考点:函数的性质。11【答案】D【解析】解:双曲线:的a=1,b=2,c=双曲线的渐近线方程为y=x=2x;离心率e=故选 D12【答案】【解析】解析:选B.程序运行次序为第一次t5,i2;第二次t16,i3;第三次t8,i4;第四次t4,i5,故输出的i5.二、填空题13【答案】 【解析】解:由图象得:f(x)在(1,3)上递减,在(3,1),(3,+)递增,f(x)在(3,1)上是增函数,正确,x=3是f(x)的极小值点,不正确;f(x)在(2,4)上是减函数,在(1,2)上是增函数,不正确,故答案为:14【答案】【解析】 考点:直线与圆的位置关系的应用. 1【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方法,本题的解答中把的最值转化为直线与圆相切是解答的关键,属于中档试题.15【答案】【解析】当n1时,a1S1k12k2,当n2时,anSnSn1(k1k22n)(k1k22n1)k22n1,k12k2k220,即k1k20,又a2,a3,a42成等差数列2a3a2a42,即8k22k28k22.由联立得k11,k21,an2n1.答案:2n116【答案】 【解析】解:一次游戏中,甲、乙、丙出的方法种数都有2种,所以总共有23=8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,所以甲胜出的概率为故答案为【点评】本题考查等可能事件的概率,关键是分清甲在游戏中胜出的情况数目17【答案】【解析】考点:解三角形【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据,根据正弦定理,可设,即可利用余弦定理求解最大角的余弦,熟记正弦、余弦定理的公式是解答的关键18【答案】 【解析】解: =(),Sn=+= (1)+()+()+()=(1)=,故答案为:【点评】本题主要考查利用裂项法进行数列求和,属于中档题三、解答题19【答案】 【解析】解:(),a=c,b2=c2椭圆方程为+=1又点A(1,)在椭圆上,=1,c2=2a=2,b=,椭圆方程为=1 ()设直线BD方程为y=x+b,D(x1,y1),B(x2,y2),与椭圆方程联立,可得4x2+2bx+b24=0=8b2+640,2b2x1+x2=b,x1x2=|BD|=,设d为点A到直线y=x+b的距离,d=ABD面积S=当且仅当b=2时,ABD的面积最大,最大值为 ()当直线BD过椭圆左顶点(,0)时,k1=2,k2=2此时k1+k2=0,猜想=1时成立证明如下:k1+k2=+=2+m=22=0当=1,k1+k2=0,故当且仅当=1时满足条件【点评】本题考查直线与椭圆方程的综合应用,考查存在性问题的处理方法,椭圆方程的求法,韦达定理的应用,考查分析问题解决问题的能力20【答案】 【解析】解:(1)根据函数f(x)=2sin(x+)(0,)的部分图象,可得=,求得=2再根据五点法作图可得2+=,求得=,f(x)=2sin(2x)(2)将y=f(x)的图象向左平移(0)个单位长度,得到y=g(x)=2sin=2sin(2x+2)的图象,y=g(x)图象的一个对称点为(,0),2+2=k,kZ,=,故的最小正值为(3)对任意的x,时,2x,sin(2x),即f(x),方程f(x)=m有两个不等根,结合函数f(x),x,时的图象可得,1m2 21【答案】 【解析】解:()证明:如果g(x)是定义域(0,+)上的增函数,则有g(x)=2ax+b+=0;从而有2ax2+bx+c0对任意x(0,+)恒成立;又a0,则结合二次函数的图象可得,2ax2+bx+c0对任意x(0,+)恒成立不可能,故当a0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;()函数f(x)=ax2+bx+c是“K函数”,g(x)=ax2+bx+clnx不是“K函数”,事实上,对于二次函数f(x)=ax2+bx+c,k=a(x1+x2)+b=2ax0+b;又f(x0)=2ax0+b,故k=f(x0);故函数f(x)=ax2+bx+c是“K函数”;对于函数g(x)=ax2+bx+clnx,不妨设0x1x2,则k=2ax0+b+;而g(x0)=2ax0+b+;故=,化简可得,=;设t=,则0t1,lnt=;设s(t)=lnt;则s(t)=0;则s(t)=lnt是(0,1)上的增函数,故s(t)s(1)=0;则lnt;故g(x)=ax2+bx+clnx不是“K函数”【点评】本题考查了导数的综合应用及学生对新定义的接受能力,属于中档题22【答案】 【解析】(本题满分为12分)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件全球化策略-洞察及研究
- 特异性抗体作用机制-洞察及研究
- 2025甘肃天水清水县盛农农业产业发展有限责任公司招聘工作人员3人备考试题及答案解析
- 2025广西壮族自治区委员会党校(广西行政学院)招聘教研人员24人考试备考试题及答案解析
- 2025安徽滁州市大学生乡村医生专项计划招聘8人笔试备考题库及答案解析
- 2025广西防城港市兴港集团有限公司夏季员工公开招聘5人考试备考试题及答案解析
- 2025广东肇庆市端州区代建项目管理中心招聘合同制工作人员2人笔试备考试题及答案解析
- 2025安徽安庆太湖县国有企业招聘高层管理人员延期笔试参考题库附答案解析
- 2025广东广州医科大学基础医学院招聘科研助理1人笔试备考题库及答案解析
- 2025澳门南方控股有限公司多岗位招聘5人笔试参考题库附答案解析
- 电梯、自动扶梯和自动人行道随行文件编制说明
- 阴影透视习题集答案
- 学校捐款协议书范本
- 车间标签标识管理制度
- 农田托管合同样本
- 部编版小学语文一年级上册教案 全册
- 医院医用织物洗涤规范
- 银行业金融机构绩效考评监管指引
- 血液透析中出血的原因及预防
- 美容院面诊知识培训课件
- 《水利工程建设项目法人工作手册2023版》知识培训
评论
0/150
提交评论