




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷嵩县第三中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 关于函数,下列说法错误的是( )(A)是的极小值点 ( B ) 函数有且只有1个零点 (C)存在正实数,使得恒成立(D)对任意两个正实数,且,若,则 2 已知ABC是锐角三角形,则点P(cosCsinA,sinAcosB)在( )A第一象限B第二象限C第三象限D第四象限3 已知直线ax+by+c=0与圆O:x2+y2=1相交于A,B两点,且,则的值是( )ABCD04 已知 m、n 是两条不重合的直线,、是三个互不重合的平面,则下列命题中 正确的是( )A若 m,n,则 mnB若,则 C若m,n,则 mnD若 m,m,则 5 已知数列an是等比数列前n项和是Sn,若a2=2,a3=4,则S5等于( )A8B8C11D116 若函数的图象关于直线对称,且当,时,则等于( )A B C. D7 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A B C D8 用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为( )Aa,b,c中至少有两个偶数Ba,b,c中至少有两个偶数或都是奇数Ca,b,c都是奇数Da,b,c都是偶数9 设是等比数列的前项和,则此数列的公比( )A-2或-1 B1或2 C.或2 D或-110设F1,F2为椭圆=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则的值为( )ABCD11已知f(x)=4+ax1的图象恒过定点P,则点P的坐标是( )A(1,5)B(1,4)C(0,4)D(4,0)12已知复合命题p(q)是真命题,则下列命题中也是真命题的是( )A(p)qBpqCpqD(p)(q)二、填空题13设f(x)是定义在R上的周期为2的函数,当x1,1)时,f(x)=,则f()=14f(x)=x(xc)2在x=2处有极大值,则常数c的值为 14已知集合,若3M,5M,则实数a的取值范围是15幂函数在区间上是增函数,则 16函数的单调递增区间是17不等式的解集为18已知f(x+1)=f(x1),f(x)=f(2x),方程f(x)=0在0,1内只有一个根x=,则f(x)=0在区间0,2016内根的个数三、解答题19如图,过抛物线C:x2=2py(p0)的焦点F的直线交C于M(x1,y1),N(x2,y2)两点,且x1x2=4()p的值;()R,Q是C上的两动点,R,Q的纵坐标之和为1,RQ的垂直平分线交y轴于点T,求MNT的面积的最小值20已知点F(0,1),直线l1:y=1,直线l1l2于P,连结PF,作线段PF的垂直平分线交直线l2于点H设点H的轨迹为曲线r()求曲线r的方程;()过点P作曲线r的两条切线,切点分别为C,D,()求证:直线CD过定点;()若P(1,1),过点O作动直线L交曲线R于点A,B,直线CD交L于点Q,试探究+是否为定值?若是,求出该定值;不是,说明理由阿啊阿21如图,在长方体ABCDA1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动(1)证明:BC1平面ACD1(2)当时,求三棱锥EACD1的体积22武汉市为增强市民交通安全意识,面向全市征召义务宣传志愿者现从符合条件的志愿者中随机抽取100名按年龄分组:第1组20,25),第2组25,30),第3组30,35),第4组35,40),第5组40,45,得到的频率分布直方图如图所示(1)分别求第3,4,5组的频率;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率23(本小题满分10分)已知圆过点,.(1)若圆还过点,求圆的方程; (2)若圆心的纵坐标为,求圆的方程.24已知在等比数列an中,a1=1,且a2是a1和a31的等差中项(1)求数列an的通项公式;(2)若数列bn满足b1+2b2+3b3+nbn=an(nN*),求bn的通项公式bn嵩县第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】 C 【解析】 ,且当时,函数递减,当时,函数递增,因此是的极小值点,A正确;,所以当时,恒成立,即单调递减,又,所以有零点且只有一个零点,B正确;设,易知当时,对任意的正实数,显然当时,即,所以不成立,C错误;作为选择题这时可得结论,选C,下面对D研究,画出函数草图可看出(0,2)的时候递减的更快,所以2 【答案】B【解析】解:ABC是锐角三角形,A+B,AB,sinAsin(B)=cosB,sinAcosB0,同理可得sinAcosC0,点P在第二象限故选:B3 【答案】A【解析】解:取AB的中点C,连接OC,则AC=,OA=1sin =sinAOC=所以:AOB=120 则=11cos120=故选A4 【答案】C【解析】解:对于A,若 m,n,则 m与n相交、平行或者异面;故A错误;对于B,若,则 与可能相交,如墙角;故B错误;对于C,若m,n,根据线面垂直的性质定理得到 mn;故C正确;对于D,若 m,m,则 与可能相交;故D错误;故选C【点评】本题考查了空间线线关系面面关系的判断;熟练的运用相关的定理是关键5 【答案】D【解析】解:设an是等比数列的公比为q,因为a2=2,a3=4,所以q=2,所以a1=1,根据S5=11故选:D【点评】本题主要考查学生运用等比数列的前n项的求和公式的能力,本题较易,属于基础题6 【答案】C【解析】考点:函数的图象与性质.【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型首先利用数形结合思想和转化化归思想可得,解得,从而,再次利用数形结合思想和转化化归思想可得关于直线对称,可得,从而7 【答案】【解析】试题分析:,故选B.考点:1.三视图;2.几何体的体积.8 【答案】B【解析】解:结论:“自然数a,b,c中恰有一个偶数”可得题设为:a,b,c中恰有一个偶数反设的内容是 假设a,b,c中至少有两个偶数或都是奇数故选B【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“9 【答案】D【解析】试题分析:当公比时,成立.当时,都不等于,所以, ,故选D. 考点:等比数列的性质.10【答案】C【解析】解:F1,F2为椭圆=1的两个焦点,可得F1(,0),F2()a=2,b=1点P在椭圆上,若线段PF1的中点在y轴上,PF1F1F2,|PF2|=,由勾股定理可得:|PF1|=故选:C【点评】本题考查椭圆的简单性质的应用,考查计算能力11【答案】A【解析】解:令x1=0,解得x=1,代入f(x)=4+ax1得,f(1)=5,则函数f(x)过定点(1,5)故选A12【答案】B【解析】解:命题p(q)是真命题,则p为真命题,q也为真命题,可推出p为假命题,q为假命题,故为真命题的是pq,故选:B【点评】本题考查复合命题的真假判断,注意pq全假时假,pq全真时真二、填空题13【答案】1 【解析】解:f(x)是定义在R上的周期为2的函数,=1故答案为:1【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”14【答案】6 【解析】解:f(x)=x32cx2+c2x,f(x)=3x24cx+c2,f(2)=0c=2或c=6若c=2,f(x)=3x28x+4,令f(x)0x或x2,f(x)0x2,故函数在(,)及(2,+)上单调递增,在(,2)上单调递减,x=2是极小值点故c=2不合题意,c=6故答案为6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式15【答案】【解析】【方法点睛】本题主要考查幂函数的定义与性质,属于中档题.幂函数定义与性质应用的三个关注点:(1)若幂函数是偶函数,则必为偶数当是分数时,一般将其先化为根式,再判断;(2)若幂函数在上单调递增,则,若在上单调递减,则;(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 116【答案】2,3) 【解析】解:令t=3+4xx20,求得1x3,则y=,本题即求函数t在(1,3)上的减区间利用二次函数的性质可得函数t在(1,3)上的减区间为2,3),故答案为:2,3)17【答案】(0,1 【解析】解:不等式,即,求得0x1,故答案为:(0,1【点评】本题主要考查分式不等式、一元二次不等式的解法,属于基础题18【答案】2016 【解析】解:f(x)=f(2x),f(x)的图象关于直线x=1对称,即f(1x)=f(1+x)f(x+1)=f(x1),f(x+2)=f(x),即函数f(x)是周期为2的周期函数,方程f(x)=0在0,1内只有一个根x=,由对称性得,f()=f()=0,函数f(x)在一个周期0,2上有2个零点,即函数f(x)在每两个整数之间都有一个零点,f(x)=0在区间0,2016内根的个数为2016,故答案为:2016三、解答题19【答案】 【解析】解:()由题意设MN:y=kx+,由,消去y得,x22pkxp2=0(*)由题设,x1,x2是方程(*)的两实根,故p=2;()设R(x3,y3),Q(x4,y4),T(0,t),T在RQ的垂直平分线上,|TR|=|TQ|得,又,即4(y3y4)=(y3+y42t)(y4y3)而y3y4,4=y3+y42t又y3+y4=1,故T(0,)因此,由()得,x1+x2=4k,x1x2=4,=因此,当k=0时,SMNT有最小值3【点评】本题考查抛物线方程的求法,考查了直线和圆锥曲线间的关系,着重考查“舍而不求”的解题思想方法,考查了计算能力,是中档题20【答案】 【解析】满分(13分)解:()由题意可知,|HF|=|HP|,点H到点F(0,1)的距离与到直线l1:y=1的距离相等,(2分)点H的轨迹是以点F(0,1)为焦点,直线l1:y=1为准线的抛物线,(3分)点H的轨迹方程为x2=4y(4分)()()证明:设P(x1,1),切点C(xC,yC),D(xD,yD)由y=,得直线PC:y+1=xC(xx1),(5分)又PC过点C,yC=,yC+1=xC(xx1)=xCx1,yC+1=,即(6分)同理,直线CD的方程为,(7分)直线CD过定点(0,1)(8分)()由()()P(1,1)在直线CD的方程为,得x1=1,直线CD的方程为设l:y+1=k(x1),与方程联立,求得xQ=(9分)设A(xA,yA),B(xB,yB)联立y+1=k(x1)与x2=4y,得x24kx+4k+4=0,由根与系数的关系,得xA+xB=4kxAxB=4k+4(10分)xQ1,xA1,xB1同号,+=|PQ|=(11分)=,+为定值,定值为2(13分)【点评】本题主要考查直线、抛物线、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、化归与转化思想,考查考生分析问题和解决问题的能力21【答案】 【解析】(1)证明:ABC1D1,AB=C1D1,四边形ABC1D1是平行四边形,BC1AD1,又AD1平面ACD1,BC1平面ACD1,BC1平面ACD1(2)解:SACE=AEAD=V=V=【点评】本题考查了线面平行的判定,长方体的结构特征,棱锥的体积计算,属于中档题22【答案】 【解析】解:(1)由题意可知第3组的频率为0.065=0.3,第4组的频率为0.045=0.2,第5组的频率为0.025=0.1;(2)第3组的人数为0.3100=30,第4组的人数为0.2100=20,第5组的人数为0.1100=10;因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组=3;第4组=2;第5组=1;应从第3,4,5组各抽取3,2,1名志愿者(3)记第3组3名志愿者为1,2,3;第4组2名志愿者为4,5;第5组1名志愿者为6;在这6名志愿者中随机抽取2名志愿者有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6);共有15种,第4组2名志愿者为4,5;至少有一名志愿者被抽中共有9种,所以第4组至少有一名志愿者被抽中的概率为【点评】本题考查列举法计算基本事件数及事件发生的概率,频率分布直方图,考查计算能力23【答案】(1);(2).【解析】试题分析:(1)当题设给出圆上三点时,求圆的方程,此时设圆的一般方程,将三点代入,求解圆的方程;(2)AB的垂直平分线过圆心,所以圆心的横坐标为,圆心与圆上任一点连线段为半径,根据圆心与半径求圆的标准方程.试题解析:(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 腰椎间盘突出合并马尾综合征护理查房
- 桡骨远端骨折合并腕管综合征护理查房
- 2020年1月国开电大法律事务专科《行政法与行政诉讼法》期末纸质考试试题及答案
- 广西南宁市第十中学2025年春季学期高一年级历史第21课战时共产主义到斯大林模式同步测试卷
- 社区美篇消防知识培训课件
- 宁夏银川市2024-2025学年高一下学期期末地理试卷(含答案)
- 小车挂靠公司合同范本
- 读书合同范本模板
- 现在的装修合同范本
- 墙体修复合同范本
- 外科学麻醉专题知识讲座培训课件
- GB/T 1871.3-1995磷矿石和磷精矿中氧化铝含量的测定容量法和分光光度法
- 课程设计与评价
- 广东省中山市20222022学年下学期期末考试八年级英语试卷
- 检修案例-MR有载调压开关的吊芯检查全解课件
- 霍尔电流传感器实训台课件
- 2023年国药控股股份有限公司招聘笔试题库及答案解析
- 石料场开采方案
- 应急中心组织架构
- 混凝土搅拌站实验室质量管理手册47590试卷教案
- 电气施工四措两案9.9
评论
0/150
提交评论