必修2第二单元圆与圆的方程.doc_第1页
必修2第二单元圆与圆的方程.doc_第2页
必修2第二单元圆与圆的方程.doc_第3页
必修2第二单元圆与圆的方程.doc_第4页
必修2第二单元圆与圆的方程.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

德智教育 中小学生会员制学习成长俱乐部 必修2第二单元圆与圆的方程 圆的标准方程在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?探索研究确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P=M|MA|=r,由两点间的距离公式写出点M适合的条件化简可得: 证明为圆的方程,得出结论。方程就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。知识应用与解题研究例(1):写出圆心为半径长等于5的圆的方程,并判断点是否在这个圆上。分析探求:可以从计算点到圆心的距离入手。探究:点与圆的关系的判断方法:(1),点在圆外(2)=,点在圆上(3),点在圆内例(2): 的三个顶点的坐标是求它的外接圆的方程分析:从圆的标准方程 可知,要确定圆的标准方程,可用待定系数法确定三个参数.例(3):已知圆心为的圆经过点和,且圆心在上,求圆心为的圆的标准方程.分析: 如图确定一个圆只需确定圆心位置与半径大小.圆心为的圆经过点和,由于圆心与A,B两点的距离相等,所以圆心在险段AB的垂直平分线m上,又圆心在直线上,因此圆心是直线与直线m的交点,半径长等于或。 圆的一般方程问题:求过三点A(0,0),B(1,1),C(4,2)的圆的方程。利用圆的标准方程解决此问题显然有些麻烦,得用直线的知识解决又有其简单的局限性,那么这个问题有没有其它的解决方法呢?带着这个问题我们来共同研究圆的方程的另一种形式圆的一般方程。探索研究:请写出圆的标准方程:(xa)2(yb)2=r2,圆心(a,b),半径r把圆的标准方程展开,并整理:x2y22ax2bya2b2r2=0取得 这个方程是圆的方程反过来给出一个形如x2y2DxEyF=0的方程,它表示的曲线一定是圆吗?把x2y2DxEyF=0配方得 (配方过程由学生去完成)这个方程是不是表示圆?(1)当D2E24F0时,方程表示(1)当时,表示以(-,-)为圆心,为半径的圆;(2)当时,方程只有实数解,即只表示一个点(-,-);(3)当时,方程没有实数解,因而它不表示任何图形综上所述,方程表示的曲线不一定是圆 只有当时,它表示的曲线才是圆,我们把形如的表示圆的方程称为圆的一般方程圆的一般方程的特点: (1)x2和y2的系数相同,不等于0没有xy这样的二次项 (2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。(三)、知识应用与解题研究例1:判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径。例2:求过三点A(0,0),B(1,1),C(4,2)的圆的方程,并求这个圆的半径长和圆心坐标。 分析:据已知条件,很难直接写出圆的标准方程,而圆的一般方程则需确定三个系数,而条件恰给出三点坐标,不妨试着先写出圆的一般方程 解:设所求的圆的方程为:在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于的三元一次方程组,即解此方程组,可得:所求圆的方程为:;得圆心坐标为(4,-3).或将左边配方化为圆的标准方程,,从而求出圆的半径,圆心坐标为(4,-3) 归纳得出使用待定系数法的一般步骤:根据提议,选择标准方程或一般方程;根据条件列出关于a、b、r或D、E、F的方程组;解出a、b、r或D、E、F,代入标准方程或一般方程。例3、已知线段AB的端点B的坐标是(4,3),端点A在圆上运动,求线段AB的中点M的轨迹方程。分析:如图点A运动引起点M运动,而点A在已知圆上运动,点A的坐标满足方程。建立点M与点A坐标之间的关系,就可以建立点M的坐标满足的条件,求出点M的轨迹方程。 解:设点M的坐标是(x,y),点A的坐标是 上运动,所以点A的坐标满足方程,即 把代入,得 空间直角坐标系(1)我们知道数轴上的任意一点M都可用对应一个实数表示,建立了平面直角坐标系后,平面上任意一点M都可用对应一对有序实数表示。那么假设我们建立一个空间直角坐标系时,空间中的任意一点是否可用对应的有序实数组表示出来呢?(2)空间直角坐标系该如何建立呢?单位正方体,该空间直角坐标系O中,什么是坐标原点,坐标轴以及坐标平面。该空间直角坐标系我们称为右手直角坐标系。(3)建立了空间直角坐标系以后,空间中任意一点M如何用坐标表示呢?2点M对应着唯一确定的有序实数组,、分别是P、Q、R在、轴上的坐标。如果给定了有序实数组,它是否对应着空间直角坐标系中的一点呢。由上我们知道了空间中任意点M的坐标都可以用有序实数组来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M,叫做点M的横坐标,叫做点M的纵坐标,叫做点M的竖坐标。 直线与方程小结与复习(二)典例解析1例1.下列命题正确的有 :每条直线都有唯一一个倾斜角与之对应,也有唯一一个斜率与之对应;倾斜角的范围是:00L的方程为 点(1,2)在直线上 b0 a1 (1) SAOB= =4 a=2 这时b=4 当a=2,b=4时SAOB为4 此时直线L的方程为即2x+y-4=0(2)求L在两轴上截距之和为时L的方程 解: 这时L在两轴上截距之和为3+2时,直线L的方程为y=-x+2+5例5已知ABC的两个顶点A(-10,2),B(6,4),垂心是H(5,2),求顶点C的坐标 解: 直线AC的方程为 即x+2y+6=0 (1)又 BC所在直线与x轴垂直 故直线BC的方程为x=6 (2)解(1)(2)得点C的坐标为C(6,-6)圆与方程小结与复习(二)典例解析:1例1。(1)求经过点A(5,2),B(3,2),圆心在直线2xy3=0上的圆的方程;(2)求以O(0,0),A(2,0),B(0,4)为顶点的三角形OAB外接圆的方程解:(1)设圆心P(x0,y0),则有,解得 x0=4, y0=5, 半径r=, 所求圆的方程为(x4)2+(y5)2=10(2)采用一般式,设圆的方程为x2+y2+Dx+Ey+F=0,将三个已知点的坐标代入列方程组解得:D=2, E=4, F=0点评:第(1),(2)两小题根据情况选择了不同形式2例2。设A(c,0)、B(c,0)(c0)为两定点,动点P到A点的距离与到B点的距离的比为定值a(a0),求P点的轨迹分析:给曲线建立方程是解析几何的两个主要问题之一,其基本方法就是把几何条件代数化;主要问题之二是根据方程研究曲线的形状、性质,即用代数的方法研究几何问题解:设动点P的坐标为(x,y),由=a(a0)得=a,化简,得(1a2)x2+2c(1+a2)x+c2(1a2)+(1a2)y2=0当a=1时,方程化为x=0当a1时,方程化为 =所以当a=1时,点P的轨迹为y轴;当a1时,点P的轨迹是以点(c,0)为圆心,|为半径的圆点评:本题主要考查直线、圆、曲线和方程等基本知识,考查运用解析几何的方法解决问题的能力,对代数式的运算化简能力有较高要求同时也考查了分类讨论这一数学思想3例3。已知O的半径为3,直线l与O相切,一动圆与l相切,并与O相交的公共弦恰为O的直径,求动圆圆心的轨迹方程分析:问题中的几何性质十分突出,切线、直径、垂直、圆心,如何利用这些几何性质呢?解:取过O点且与l平行的直线为x轴,过O点且垂直于l的直线为y轴,建立直角坐标系设动圆圆心为M(x,y),O与M的公共弦为AB,M与l切于点C,则|MA|=|MC|AB为O的直径,MO垂直平分AB于O由勾股定理得|MA|2=|MO|2+|AO|2=x2+y2+9,而|MC|=|y+3|,=|y+3|化简得x2=6y,这就是动圆圆心的轨迹方程注意:求轨迹的步骤是“建系,设点,找关系式,除瑕点”4例4。已知圆C的圆心在直线xy4=0上,并且通过两圆C1:x2+y24x3=0和C2:x2+y24y3=0的交点,(1)求圆C的方程; (2)求两圆C1和C2相交弦的方程解:(1)因为所求的圆过两已知圆的交点,故设此圆的方程为:x2+y24x3+(x2+y24y3)=0,即 (1+)(x2+y2)4x4y33=0,即 =0,圆心为 (,),由于圆心

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论