




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷呈贡区民族中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知正项数列an的前n项和为Sn,且2Sn=an+,则S2015的值是( )ABC2015D2 在的展开式中,含项的系数为( )(A) ( B ) (C) (D) 3 为了得到函数y=sin3x的图象,可以将函数y=sin(3x+)的图象( )A向右平移个单位B向右平移个单位C向左平移个单位D向左平移个单位4 设抛物线C:y2=2px(p0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( )Ay2=4x或y2=8xBy2=2x或y2=8xCy2=4x或y2=16xDy2=2x或y2=16x5 过点(2,2)且与双曲线y2=1有公共渐近线的双曲线方程是( )A=1B=1C=1D=16 已知向量=(1,2),=(x,4),若,则x=( ) A 4 B 4 C 2 D 27 已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,则f(2)+g(2)=( )A16B16C8D88 已知函数f(x)=log2(x2+1)的值域为0,1,2,则满足这样条件的函数的个数为( )A8B5C9D279 下列说法正确的是( ) A.圆锥的侧面展开图是一个等腰三角形; B.棱柱即是两个底面全等且其余各面都是矩形的多面体; C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥; D.通过圆台侧面上的一点,有无数条母线. 10已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A B C D11已知点是双曲线C:左支上一点,是双曲线的左、右两个焦点,且,与两条渐近线相交于,两点(如图),点恰好平分线段,则双曲线的离心率是( )A. B.2 C. D.【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.12已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )A =1.23x+4B =1.23x0.08C =1.23x+0.8D =1.23x+0.08二、填空题13的展开式中的系数为 (用数字作答)14如图所示,正方体ABCDABCD的棱长为1,E、F分别是棱AA,CC的中点,过直线EF的平面分别与棱BB、DD交于M、N,设BM=x,x0,1,给出以下四个命题:平面MENF平面BDDB;当且仅当x=时,四边形MENF的面积最小;四边形MENF周长l=f(x),x0,1是单调函数;四棱锥CMENF的体积v=h(x)为常函数;以上命题中真命题的序号为15已知,则不等式的解集为_【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力16函数f(x)=loga(x1)+2(a0且a1)过定点A,则点A的坐标为17若x,y满足线性约束条件,则z=2x+4y的最大值为18已知双曲线=1(a0,b0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=48x的准线上,则双曲线的方程是 三、解答题19已知函数f(x)=loga(x2+2),若f(5)=3;(1)求a的值; (2)求的值; (3)解不等式f(x)f(x+2)20已知,其中e是自然常数,aR()讨论a=1时,函数f(x)的单调性、极值; ()求证:在()的条件下,f(x)g(x)+21已知p:2x23x+10,q:x2(2a+1)x+a(a+1)0(1)若a=,且pq为真,求实数x的取值范围(2)若p是q的充分不必要条件,求实数a的取值范围22如图,平面ABB1A1为圆柱OO1的轴截面,点C为底面圆周上异于A,B的任意一点()求证:BC平面A1AC;()若D为AC的中点,求证:A1D平面O1BC23已知函数f(x)=sin(x+)(0,02)一个周期内的一系列对应值如表:x0y101(1)求f(x)的解析式;(2)求函数g(x)=f(x)+sin2x的单调递增区间24已知:函数f(x)=log2,g(x)=2ax+1a,又h(x)=f(x)+g(x)(1)当a=1时,求证:h(x)在x(1,+)上单调递增,并证明函数h(x)有两个零点;(2)若关于x的方程f(x)=log2g(x)有两个不相等实数根,求a的取值范围呈贡区民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:2Sn=an+,解得a1=1当n=2时,2(1+a2)=,化为=0,又a20,解得,同理可得猜想验证:2Sn=+=, =,因此满足2Sn=an+,Sn=S2015=故选:D【点评】本题考查了猜想分析归纳得出数列的通项公式的方法、递推式的应用,考查了由特殊到一般的思想方法,考查了推理能力与计算能力,属于难题2 【答案】C 【解析】因为,所以项只能在展开式中,即为,系数为故选C3 【答案】A【解析】解:由于函数y=sin(3x+)=sin3(x+)的图象向右平移个单位,即可得到y=sin3(x+)= sin3x的图象,故选:A【点评】本题主要考查函数y=Asin(x+)的图象平移变换,属于中档题4 【答案】 C【解析】解:抛物线C方程为y2=2px(p0),焦点F坐标为(,0),可得|OF|=,以MF为直径的圆过点(0,2),设A(0,2),可得AFAM,RtAOF中,|AF|=,sinOAF=,根据抛物线的定义,得直线AO切以MF为直径的圆于A点,OAF=AMF,可得RtAMF中,sinAMF=,|MF|=5,|AF|=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x故选:C方法二:抛物线C方程为y2=2px(p0),焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5,4),代入抛物线方程得p210p+16=0,所以p=2或p=8所以抛物线C的方程为y2=4x或y2=16x故答案C【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题5 【答案】A【解析】解:设所求双曲线方程为y2=,把(2,2)代入方程y2=,解得=2由此可求得所求双曲线的方程为故选A【点评】本题考查双曲线的渐近线方程,解题时要注意公式的灵活运用6 【答案】D【解析】: 解:,42x=0,解得x=2故选:D7 【答案】B【解析】解:f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,f(2)g(2)=(2)32(2)2=16即f(2)+g(2)=f(2)g(2)=16故选:B【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力8 【答案】C【解析】解:令log2(x2+1)=0,得x=0,令log2(x2+1)=1,得x2+1=2,x=1,令log2(x2+1)=2,得x2+1=4,x=则满足值域为0,1,2的定义域有:0,1, ,0,1, ,0,1, ,0,1, ,0,1,1, ,0,1,1, ,0,1, ,0,1, ,0,1,1, 则满足这样条件的函数的个数为9故选:C【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题9 【答案】C【解析】考点:几何体的结构特征.10【答案】【解析】试题分析:,故选B.考点:1.三视图;2.几何体的体积.11【答案】A. 【解析】12【答案】D【解析】解:设回归直线方程为=1.23x+a样本点的中心为(4,5),5=1.234+aa=0.08回归直线方程为=1.23x+0.08故选D【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题二、填空题13【答案】20【解析】【知识点】二项式定理与性质【试题解析】通项公式为:令12-3r=3,r=3所以系数为:故答案为:14【答案】 【解析】解:连结BD,BD,则由正方体的性质可知,EF平面BDDB,所以平面MENF平面BDDB,所以正确连结MN,因为EF平面BDDB,所以EFMN,四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN长度最小,对应四边形MENF的面积最小所以正确因为EFMN,所以四边形MENF是菱形当x0,时,EM的长度由大变小当x,1时,EM的长度由小变大所以函数L=f(x)不单调所以错误连结CE,CM,CN,则四棱锥则分割为两个小三棱锥,它们以CEF为底,以M,N分别为顶点的两个小棱锥因为三角形CEF的面积是个常数M,N到平面CEF的距离是个常数,所以四棱锥CMENF的体积V=h(x)为常函数,所以正确故答案为:【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高15【答案】【解析】函数在递增,当时,解得;当时,解得,综上所述,不等式的解集为16【答案】(2,2) 【解析】解:loga1=0,当x1=1,即x=2时,y=2,则函数y=loga(x1)+2的图象恒过定点 (2,2)故答案为:(2,2)【点评】本题考查对数函数的性质和特殊点,主要利用loga1=0,属于基础题17【答案】38 【解析】解:作出不等式组对应的平面区域如图:由z=2x+4y得y=x+,平移直线y=x+,由图象可知当直线y=x+经过点A时,直线y=x+的截距最大,此时z最大,由,解得,即A(3,8),此时z=23+48=6+32=32,故答案为:3818【答案】【解析】解:因为抛物线y2=48x的准线方程为x=12,则由题意知,点F(12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为故答案为:【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键三、解答题19【答案】 【解析】解:(1)f(5)=3,即loga27=3解锝:a=3(2)由(1)得函数,则=(3)不等式f(x)f(x+2),即为化简不等式得函数y=log3x在(0,+)上为增函数,且的定义域为Rx2+2x2+4x+6即4x4,解得x1,所以不等式的解集为:(1,+)20【答案】 【解析】解:(1)a=1时,因为f(x)=xlnx,f(x)=1,当0x1时,f(x)0,此时函数f(x)单调递减当1xe时,f(x)0,此时函数f(x)单调递增所以函数f(x)的极小值为f(1)=1(2)因为函数f(x)的极小值为1,即函数f(x)在(0,e上的最小值为1又g(x)=,所以当0xe时,g(x)0,此时g(x)单调递增所以g(x)的最大值为g(e)=,所以f(x)ming(x)max,所以在(1)的条件下,f(x)g(x)+【点评】本题主要考查利用函数的单调性研究函数的单调性问题,考查函数的极值问题,本题属于中档题21【答案】 【解析】解:p:,q:axa+1;(1)若a=,则q:;pq为真,p,q都为真;,;实数x的取值范围为;(2)若p是q的充分不必要条件,即由p能得到q,而由q得不到p;,;实数a的取值范围为【点评】考查解一元二次不等式,pq真假和p,q真假的关系,以及充分不必要条件的概念22【答案】 【解析】证明:()因为AB为圆O的直径,点C为圆O上的任意一点BCAC 又圆柱OO1中,AA1底面圆O,AA1BC,即BCAA1 而AA1AC=ABC平面A1AC ()取BC中点E,连结DE、O1E,D为AC的中点ABC中,DEAB,且DE=AB 又圆柱OO1中,A1O1AB,且DEA1O1,DE=A1O1A1DEO1为平行四边形 A1DEO1 而A1D平面O1BC,EO1平面O1BCA1D平面O1BC 【点评】本题主要考查直线与直线、直线与平面、平面与平面的位置关系;考查学生的空间想象能力及推理论证能力23【答案】 【解析】(本题满分12分)解:(1)由表格给出的信息知,函数f(x)的周期为T=2(0)=所以=2,由sin(20+)=1,且02,所以=所以函数的解析式为f(x)=sin(2x+)=cos2x6分(2)g(x)=f(x)+sin2x=sin2x+cos2x=2sin(2x+),令2k2x+2k,kZ则得kxk+,kZ故函数g(x)=f(x)+sin2x的单调递增区间是:,kZ12分【点评】本题主要考查了由y=Asin(x+)的部分图象确定其解析式,正弦函数的单调性,周期公式的应用,属于基本知识的考查24【答案】 【解析】解:(1)证明:h(x)=f(x)+g(x)=log2+2x,=log2(1)+2x;y=1在(1,+)上是增函数,故y=log2(1)在(1,+)上是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025劳动合同与劳务合同在法律上的差异
- 2025 年工程总承包合同
- 2025订购窗帘合同模板
- 2025【合同范本】市场劳动合同范本
- 2025合同范本个人汽车贷款合同样本
- 2025至2030中国人事管理系统行业产业运行态势及投资规划深度研究报告
- 2025-2030资产证券化产业规划专项研究报告
- 哈尔滨2025年哈尔滨市邮政管理局所属事业单位选调负责人笔试历年参考题库附带答案详解
- 2025至2031年中国洗脸盆落水排杆行业投资前景及策略咨询研究报告
- 2025至2031年中国氧化铝空心球行业投资前景及策略咨询研究报告
- 2025年基金与投资管理考试试卷及答案
- 书画培训合作合同范本
- 2025年电子商务基础知识考试试题及答案
- 2025年河北省中考乾坤押题卷物理试卷B及答案
- 马帮运输安全协议书
- 2025年安全生产考试题库(矿业行业安全规范)试卷
- 中职数学拓展模块课件-正弦型函数的图像和性质
- 国家宪法知识竞赛题库题库加答案下载
- 六年级学生心理疏导教育
- 国家开放大学《药物治疗学(本)》形考作业1-4参考答案
- 电网工程设备材料信息参考价2025年第一季度
评论
0/150
提交评论