




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
弧长与扇形面积一.选择题1. (2018湖北十堰3分)如图,扇形OAB中,AOB=100,OA=12,C是OB的中点,CDOB交于点D,以OC为半径的交OA于点E,则图中阴影部分的面积是()A12+18B12+36C6D6【分析】连接OD.AD,根据点C为OA的中点可得CDO=30,继而可得ADO为等边三角形,求出扇形AOD的面积,最后用扇形AOB的面积减去扇形COE的面积,再减去S空白ADC即可求出阴影部分的面积【解答】解:如图,连接OD,AD,点C为OA的中点,OC=OA=OD,CDOA,CDO=30,DOC=60,ADO为等边三角形,OD=OA=12,OC=CA=6,CD=,6,S扇形AOD=24,S阴影=S扇形AOBS扇形COE(S扇形AODSCOD)=(2466)=18+6故选:C【点评】本题考查了扇形的面积计算,解答本题的关键是掌握扇形的面积公式:S=2.2. (2018湖北江汉3分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A120B180C240D300【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数【解答】解:设母线长为R,底面半径为r,底面周长=2r,底面面积=r2,侧面面积=rR,侧面积是底面积的2倍,2r2=rR,R=2r,设圆心角为n,则=2r=R,解得,n=180,故选:B3(2018辽宁省沈阳市)(2.00分)如图,正方形ABCD内接于O,AB=2,则的长是()ABC2D【分析】连接OA.OB,求出AOB=90,根据勾股定理求出AO,根据弧长公式求出即可【解答】解:连接OA.OB,正方形ABCD内接于O,AB=BC=DC=AD,=,AOB=360=90,在RtAOB中,由勾股定理得:2AO2=(2)2,解得:AO=2,的长为=,故选:A【点评】本题考查了弧长公式和正方形的性质,能求出AOB的度数和OA的长是解此题的关键4(2018辽宁省盘锦市)如图,一段公路的转弯处是一段圆弧(),则的展直长度为()A3B6C9D12【解答】解:的展直长度为: =6(m)故选B3(2018辽宁省抚顺市)(3.00分)如图,AB是O的直径,CD是弦,BCD=30,OA=2,则阴影部分的面积是()ABCD2【分析】根据圆周角定理可以求得BOD的度数,然后根据扇形面积公式即可解答本题【解答】解:BCD=30,BOD=60,AB是O的直径,CD是弦,OA=2,阴影部分的面积是:=,故选:B【点评】本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答5. (2018广安3分)如图,已知O的半径是2,点A.B.C在O上,若四边形OABC为菱形,则图中阴影部分面积为()A2BC2D【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S菱形ABCOS扇形AOC可得答案【解答】解:连接OB和AC交于点D,如图所示:圆的半径为2,OB=OA=OC=2,又四边形OABC是菱形,OBAC,OD=OB=1,在RtCOD中利用勾股定理可知:CD=,AC=2CD=2,sinCOD=,COD=60,AOC=2COD=120,S菱形ABCO=OBAC=22=2,S扇形AOC=,则图中阴影部分面积为S菱形ABCOS扇形AOC=2,故选:C【点评】本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=ab(A.b是两条对角线的长度);扇形的面积=,有一定的难度二.填空题1. (2018广西梧州3分)如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角ACB=120,则此圆锥高OC的长度是4【分析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA,最后用勾股定理即可得出结论【解答】解:设圆锥底面圆的半径为r,AC=6,ACB=120,=2r,r=2,即:OA=2,在RtAOC中,OA=2,AC=6,根据勾股定理得,OC=4,故答案为:4【点评】此题主要考查了扇形的弧长公式,勾股定理,求出OA是解本题的关键2. (2018湖北荆州3分)如图,将钢球放置到一个倒立的空心透明圆锥中,测得相关数据如图所示(图中数据单位:cm),则钢球的半径为 cm(圆锥的壁厚忽略不计)【解答】解:钢球的直径:20=(cm),钢球的半径:2=(cm)答:钢球的半径为cm故答案为:3(2018重庆市B卷)(4.00分)如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是82(结果保留)【分析】根据S阴=SABDS扇形BAE计算即可;【解答】解:S阴=SABDS扇形BAE=44=82,故答案为82【点评】本题考查扇形的面积的计算,正方形的性质等知识,解题的关键是学会用分割法求阴影部分面积4. (2018乐山3分)如图,OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把OAC绕点A按顺时针方向旋转到OAC,使得点O的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为 解:过O作OMOA于M,则OMA=90,点O的坐标是(1,),OM=,OM=1AO=2,AM=21=1,tanOAM=,OAM=60,即旋转角为60,CAC=OAO=60把OAC绕点A按顺时针方向旋转到OAC,SOAC=SOAC,阴影部分的面积S=S扇形OAO+SOACSOACS扇形CAC=S扇形OAOS扇形CAC= 故答案为:5.(2018辽宁大连3分)一个扇形的圆心角为120,它所对的弧长为6cm,则此扇形的半径为 cm解:L=,R=9故答案为:96.(2018江苏镇江2分)圆锥底面圆的半径为1,侧面积等于3,则它的母线长为3【解答】解:设它的母线长为l,根据题意得21l=3,解得l=3,即它的母线长为3故答案为37.(2018江苏常州2分)如图,ABC是O的内接三角形,BAC=60,的长是,则O的半径是2【分析】连接OB.OC,利用弧长公式转化为方程求解即可;【解答】解:连接OB.OCBOC=2BAC=120,的长是,=,r=2,故答案为2【点评】本题考查三角形的外接圆与外心,圆周角定理,弧长的计算等知识,解题的关键是熟练掌握弧长公式,属于中考常考题型三.解答题(2018湖北荆州10分)问题:已知、均为锐角,tan=,tan=,求+的度数探究:(1)用6个小正方形构造如图所示的网格图(每个小正方形的边长均为1),请借助这个网格图求出+的度数;延伸:(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年活性氧化铝项目规划申请报告
- 2025年茶艺师职业技能鉴定理论试卷(茶艺行业产业链延伸篇)
- 2025年初中历史七年级下册阶段检测试卷:历史知识与能力测评
- 2025年消防安全知识培训考试题库:消防设施操作案例分析试题库
- 时光荏苒我的成长故事记事12篇
- 2025年PETS二级英语听力训练试卷:短篇听力与对话解析
- 2025年翻译资格考试俄语二级笔译模拟试题卷
- 2025年电工特种作业操作证考试试卷:电力系统稳定运行与控制试题
- 智能物流2025:自动驾驶卡车在物流运输中的智能车载网络扩展报告
- 线下演出市场2025年复苏趋势下的演出市场创新技术应用前景报告
- 《士兵突击》课件
- 《长方形和正方形》 完整版课件
- 苏教版六年级科学下册期末考试卷及答案
- 孕产期保健管理及工作规范(喀什)
- 再遇青春同学聚会画册PPT模板
- 二、施组报审表
- 无砟轨道底座板首件施工总结(最新)
- 油藏数值模拟中几种主要的数学模型
- 湖南省高等教育自学考试毕业生登记表(共5页)
- 200立方米谷氨酸发酵罐设计
- 多媒体给农村初中语文教学注入了活力
评论
0/150
提交评论