《函数的周期性》doc版.doc_第1页
《函数的周期性》doc版.doc_第2页
《函数的周期性》doc版.doc_第3页
《函数的周期性》doc版.doc_第4页
《函数的周期性》doc版.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

VIP免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

让更多的孩子得到更好的教育12函数的周期性教学目标:掌握周期函数的定义及最小正周期的意义教学重点:了解常见的具有周期性的抽象函数(一) 主要知识:周期函数的定义:对于定义域内的每一个,都存在非零常数,使得恒成立,则称函数具有周期性,叫做的一个周期,则()也是的周期,所有周期中的最小正数叫的最小正周期.几种特殊的抽象函数:具有周期性的抽象函数:函数满足对定义域内任一实数(其中为常数),,则是以为周期的周期函数; ,则是以为周期的周期函数;,则是以为周期的周期函数; ,则是以为周期的周期函数;,则是以为周期的周期函数.,则是以为周期的周期函数.,则是以为周期的周期函数.函数满足(),若为奇函数,则其周期为,若为偶函数,则其周期为.函数的图象关于直线和都对称,则函数是以为周期的周期函数;函数的图象关于两点、都对称,则函数是以为周期的周期函数;函数的图象关于和直线都对称,则函数是以为周期的周期函数;(二)主要方法:判断一个函数是否是周期函数要抓住两点:一是对定义域中任意的恒有; 二是能找到适合这一等式的非零常数,一般来说,周期函数的定义域均为无限集.解决周期函数问题时,要注意灵活运用以上结论,同时要重视数形结合思想方法的运用,还要注意根据所要解决的问题的特征来进行赋值。(三)典例分析: 问题1(山东)已知定义在上的奇函数满足,则的值为 xyBA问题2(上海) 设的最小正周期且为偶函数,它在区间上的图象如右图所示的线段,则在区间上, 已知函数是周期为的函数,当时,当 时,的解析式是 是定义在上的以为周期的函数,对,用表示区间,已知当时,求在上的解析式。 问题3(福建)定义在上的函数满足,当时,则 ; ; (天津文) 设是定义在上以为周期的函数,在内单调递减,且的图像关于直线对称,则下面正确的结论是 问题4定义在上的函数,对任意,有,且,求证:;判断的奇偶性;若存在非零常数,使,证明对任意都有成立;函数是不是周期函数,为什么?问题5(全国)设是定义在上的偶函数,其图象关于直线对称,对任意的,都有.设,求、;证明:是周期函数.记,求.(四)巩固练习: (北京春)若存在常数,使得函数满足,的一个正周期为 设函数()是以为周期的奇函数,且,则 函数既是定义域为的偶函数,又是以为周期的周期函数,若在上是减函数,那么在上是增函数 减函数 先增后减函数 先减后增函数设,记,则 (五)课后作业: 已知函数是以为周期的周期函数,且当时,则的值为 设偶函数对任意,都有,且当时,则 设函数是定义在上的奇函数,对于任意的,都有,当时,则 已知是定义在实数集上的函数,满足,且时,.求时,的表达式;证明是上的奇函数(朝阳模拟)已知函数的图象关于点对称,且满足,又,求的值(六)走向高考: (福建)是定义在上的以为周期的奇函数,且在区间内解的个数的最小值是 (安徽)定义在上的函数既是奇函数,又是周期函数,是它的一个正周期若将方程在闭区间上的根的个数记为,则可能为 (全国)已知函数为上的奇函数,且满足,当时,则等于( ) (安徽)函数对于任意实数满足条件,若,则 (福建文)已知是周期为的奇函数,当时,设则(天津)定义在上的函数既是偶函数又是周期函数,若的最小正周期是,且当时,则的值为 (天津)设是定义在上的奇函数,且的图象关于直线对称,则 (广东)设函数在上满足,且在闭区间上,只有()试判断函数的奇偶性;()试求方程在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论